Neuroscience
-
Proteomic profiles of the thalamus and the correlation between the rats' performance on a spatial learning task and differential protein expression were assessed in the thiamine deficiency (TD) rat model of Wernicke-Korsakoff syndrome. Two-dimensional gel-electrophoresis detected 320 spots and a significant increase or decrease in seven proteins. Four proteins were correlated to rat behavioral performance in the Morris Water Maze. ⋯ The association of VDAC is evident in trials in which the rats' performance was worst, in which the VDAC protein was reduced, as confirmed by Western blot. No difference was observed on the mRNA of Vdac genes, indicating that the decreased VDAC expression may be related to a post-transcriptional process. The results show that TD neurodegeneration involves changes in thalamic proteins and suggest that VDAC protein activity might play an important role in an initial stage of the spatial learning process.
-
Multiple sclerosis (MS) is thought to result from a combination of genetics and environmental factors. Several lines of evidence indicate that significant prevalence of anxiety and depression-related disorders in MS patients can influence the progression of the disease. Although we and others have already reported the consequences of prenatal maternal immune activation on anxiety and depression, less is known about the interplay between maternal inflammation, MS and gender. ⋯ Interestingly, the severity of the disease was associated with increased anxiety/depressive-like behaviors and elevated corticosterone or TNF-α levels in both sexes. Overall, these data suggest that maternal immune activation with Poly I:C during mid-pregnancy increases anxiety- and depressive-like behaviors, and the clinical symptoms of EAE in a sex-dependent manner in non-EAE or EAE-induced offspring. Finally, the progression of EAE in offspring seems to be linked to maternal immune activation-induced dysregulation in neuro-immune-endocrine system.
-
Icariin (ICA), a flavonoid extracted from the traditional Chinese herb Herba Epimedii that can freely cross the blood-brain barrier, inhibits neuroinflammation and attenuates oxidative stress damage. Our previous studies demonstrated that icariin exerts an antidepressant-like activity in a social defeat mouse model. However, it is unknown whether icariin is beneficial for the treatment of depression via its modulation of oxidative stress and neuroinflammation. ⋯ Interestingly, icariin negatively regulated the activation of the nod-like receptor protein 3 (NLRP3) inflammasome/caspase-1/IL-1β axis in the hippocampus of CMS rats. These results confirm that icariin exerts antidepressant-like effects, which may be mediated, at least in part, by enhanced antioxidant status and anti-inflammatory effects on the brain tissue via the inhibition of NF-κB signaling activation and the NLRP3-inflammasome/caspase-1/IL-1β axis. Our findings provide new information to understand the antidepressant action of icariin, which is targeted to the NLRP3-inflammasom in brain.
-
Using ERP adaptation paradigms, studies have shown that the N170 adaptation effect is a stable phenomenon for both faces and words. However, the N170 adaptation effect for repeated identity remains unclear, so we have addressed this with two experiments. In Experiment 1, we investigated the face-related N170 repeated adaptation effect in a short interstimulus interval (ISI) and found that the N170 response elicited by faces was smaller when preceded by a same face adaptor than by another face adaptor. ⋯ For the first time, the results indicated that the N170 response elicited by words was larger with a different word as an adaptor relative to the same word as an adaptor. Our results demonstrate that the face-related N170 response is sensitive to visual face features and extend the characteristics of N170 with the sensitivity to repeated items to other familiar objects of expertise (i.e. words). The results also suggest that there are some common characteristics between faces and words in the early perceptual processing.
-
The primary visual cortex (V1) is the first step in visual information processing and its function may be modulated by acetylcholine through nicotinic receptors (nAChRs). Since our previous work demonstrated that visual acuity and cortical spatial resolution limit were significantly reduced in α7 knock-out (KO) mice in the absence of retinal alterations, we decided to characterize the contribution of homomeric α7 nicotinic receptors (α7nAChRs) to visual information processing at the cortical level. We evaluated long-term forms of synaptic plasticity in occipital slices containing V1 from α7 KO mice and in wild-type (WT) slices perfused with nAChRs selective blocking agents. ⋯ Furthermore, the acute and selective blockade of α7nAChRs in slices from WT mice with either α-bungarotoxin or methyllycaconitine did not alter the expression of LTP and LTD. Conversely, the perfusion with the unspecific nAChRs antagonist mecamylamine impaired LTP and LTD. Our results suggest the presence of impaired synaptic plasticity in the V1 of α7 KO mice and indicate a different contribution of nAChRs to visual cortex function.