Neuroscience
-
Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the substantia nigra (SN). Epidemiological evidence has suggested a link between type 2 diabetes and PD, although the mechanisms remain largely unknown. We applied LC-MS/MS-based pattern analysis to investigate altered proteomes in the SN of db/db mice (db-SN) and high-fat diet mice (HFD-SN), revealing that the level of mitochondrial proteins has changed in the SN of diabetic mice compared to that of control mice. ⋯ Interestingly, these alterations were reversed by the administration of metformin, one of most frequently prescribed anti-hyperglycemic agents. The slight loss of dopaminergic neurons was found in chronic HFD-SN that was restored by metformin. Taken together, our data suggest that the dysregulation of Parkin-PARIS-PGC-1α pathway by metabolic malregulation may contribute to the pathogenesis of PD and metformin might exert a neuroprotective effect on PD via the restoration of parkin.
-
The medial parabrachial nucleus (MPB) and external part of the medial parabrachial nucleus (MPBE) relay gustatory, oral mechanosensory and other visceral information in the rat brain and reportedly project not only to the parvicellular part of the posteromedial ventral thalamic nucleus (VPMpc) but also to the ventrocaudal part of the intralaminar thalamic nuclei. Generally, the intralaminar thalamic nuclei project topographically to the caudate putamen (CPu); however, it is unclear where the ventrocaudal part of the intralaminar thalamic nuclei projects within the CPu. Thus, we visualized neural pathways from the MPB and MPBE to the CPu via the ventrocaudal part of the intralaminar thalamic nuclei using an anterograde tracer, biotinylated dextran amine, and a retrograde tracer, cholera toxin B subunit. ⋯ Further, we found that the VPMpc rather projected to the interstitial nucleus of the posterior limb of the anterior commissure than the CPu. The ventral part of the CPu is reported to be involved in jaw movement as well as food and water intake functions. Therefore, these parabrachio-thalamo-striatal pathways that we demonstrated here suggest that gustatory and oral mechanosensory information affects feeding behavior within the ventral part of the CPu.
-
Statins are a class of cholesterol-lowering drugs and have been suggested therapeutic use for neurodegenerative diseases including Alzheimer's disease (AD). Our recent studies revealed a neuronal protective effect of lovastatin (LOV) from N-methyl-d-aspartic acid (NMDA) excitotoxicity. The neuroprotective mechanism of statins, however, is far unknown. ⋯ The protective effect of LOV occurred at multiple pathological sites of tau protein, including Tyr181, Tyr231 Ser202/Tyr205, Tyr212/Ser214 and Ser396/Ser404. Further analysis revealed that the potential mechanism of the suppressive effect of LOV resulted from two aspects, activating OA-inhibited protein phosphatase 2A (PP2A) activity and attenuating OA-induced activity of tau kinases CDK5/P25 and CDK2/4, but not glycogen synthase kinase 3β (GSK3β). These findings give new insights into the molecular mechanism of LOV-mediated neuroprotective effect and provide experimental evidence for its therapeutic use in AD.
-
Neuropathic pain is a severe clinical problem, often appearing as a co-symptom of many diseases or manifesting as a result of damage to the nervous system. Many drugs and agents are currently used for the treatment of neuropathic pain, such as tricyclic antidepressants (TCAs). The aims of this paper were to test the effects of two classic TCAs, doxepin and amitriptyline, in naïve animals and in a model of neuropathic pain and to determine the role of cytokine activation in the effects of these drugs. ⋯ Allodynia and hyperalgesia induced in naïve animals by amitriptyline and doxepin may be associated with an increase in the levels of pronociceptive cytokines resulting from 5-HT3-induced hypersensitivity. Our results provide new and important information about the possible side effects of antidepressants. Further investigation of these mechanisms may help to guide decisions about the use of classic TCAs for therapy.
-
Increasing evidence has suggested that microglia dysfunction plays an important role in the pathogenesis of depression. Both classical activation (M1 activation) and alternative activation (M2 activation) may be involved in the process. M1-activated microglia secrete various pro-inflammatory cytokines and neurotoxic mediators, which may contribute to the development of depression, while M2-activated microglia promote tissue reconstruction by releasing anti-inflammatory cytokines involved in the process of depression. ⋯ The indexes of activation were measured by real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA) and Western blot. The present results showed that both fluoxetine and S-citalopram significantly down-regulated the indexes of M1 activation and up-regulated the M2 activation indexes on mRNA and protein levels either in cell line or primary cells. Taken together, the results suggested that fluoxetine and S-citalopram modulated the immune system by inhibiting M1 activation and by improving M2 activation of microglia and that the immune system modulation may partially mediate the therapeutic effects of antidepressant drugs-SSRIs.