Neuroscience
-
The association between a fit body and a fit brain in children has led to a rise of behavioral and neuroscientific research. Yet, the relation of cardiorespiratory fitness on premotor neurocognitive preparation with early visual processing has received little attention. Here, 41 healthy, lower and higher fit preadolescent children were administered a modified version of the Eriksen flanker task while electroencephalography (EEG) and behavioral measures were recorded. ⋯ Fitness-related differences selectively emerged at prefrontal brain regions during response preparation, with larger pN amplitude for higher than lower fit children, and at early perceptual stages after stimulus onset, with larger P1 and N1 amplitudes in higher relative to lower fit children. Collectively, the results suggest that the benefits of being aerobically fit appear at the stage of cognitive preparation prior to stimulus presentation and the behavioral response during the performance of a task that challenges cognitive control. Further, it is likely that enhanced activity in prefrontal brain areas may improve cognitive control of visuo-motor tasks, allowing for stronger proactive inhibition and larger early allocation of selective attention resources on relevant external stimuli.
-
The role of the cerebral cortex in maintaining human standing balance remains unclear. Beta corticomuscular coherence (CMC) provides a measure of communication between the sensory-motor cortex and muscle, but past literature has not demonstrated significant beta CMC during human stance. This study evaluated the effects of stance width, vision, and surface compliance on beta CMC during human stance using methods to enhance sensitivity to CMC. ⋯ No significant differences were detected when comparing eyes-open to eyes-closed conditions or when comparing firm- to foam-surface conditions. Correlations between CMC magnitude and COP sway elicited some significant relationships, but there was no consistent direction or pattern of correlation based on muscle or stance condition. Results demonstrate that significant beta CMC is evident during human standing balance, and that beta CMC is responsive to changes in mechanical, but not visual or surface, conditions.
-
GABA (γ-amino-butyric acid) -mediated signaling is normally associated with synaptic inhibition due to ionotropic GABA receptors that gate an inward Cl(-) current, hyperpolarizing the membrane potential. However, there are also situations where ionotropic GABA receptors trigger a Cl(-) efflux that results in depolarization. The well-characterized central nervous system of the medicinal leech was used to study the functional significance of opposing effects of GABA at the synaptic circuit level. ⋯ BUM treatment depressed N cell synapses, again similar to what is observed following BIC treatment and suggests that GABA has an excitatory effect on these synapses. The opposing effects of GABA could also be observed at the behavioral level with BIC and VU increasing responsiveness to non-nociceptive stimulation while BIC and BUM decreased responsiveness to nociceptive stimulation. These findings demonstrate that distinct synaptic inputs within a shared neural circuit can be differentially modulated by GABA in a functionally relevant manner.
-
Basal forebrain cholinergic neurons (BFCN) are selectively vulnerable to damage and loss in a number of neurodegenerative disorders that afflict the elderly, particularly Alzheimer's disease. The reasons for this selective vulnerability remain poorly understood. Given that intraneuronal accumulation of the amyloid-β peptide (Aβ) has been shown to exert deleterious effects on neurons, we tested potential accumulation of Aβ within BFCN in rhesus monkeys, which like the human display age-related accumulation of this peptide in plaques. ⋯ In some nbM-Ch4 neurons, 1282 immunoreactivity had the appearance of large peptide aggregates. Significant accumulation and age-related increase of Aβ in BFCN is likely to interfere with the normal functioning of these neurons. It remains to be determined if similar accumulation of Aβ occurs in human BFCN.
-
Recent research suggests that long-interval intracortical inhibition (LICI) is followed by a transitory period of late cortical disinhibition (LCD) that can even lead to a net increase in cortical excitability. The relationship between LICI/LCD and voluntary drive remains poorly understood. Our study aims at investigating the influence of index abduction on LICI and LCD in an actively engaged muscle and a neighboring muscle, while varying the intensity of the conditioning stimulus (CS). ⋯ No post-LICI facilitation was observed at rest - even when the CS intensity was set to 160% RMT. In contrast, long-interval intracortical facilitation (LICF) was observed in the quiescent ADM when FDI was active. LICF may then be associated with voluntary activity albeit with lack of topographic specificity.