Neuroscience
-
Neuroinflammation has long been known as an accompanying pathology of Alzheimer's disease. Microglia surrounding amyloid plaques in the brain of Auguste D were described in the original publication of Alois Alzheimer. ⋯ While gaps in our knowledge remain, and conflicting data are abound in the field, our understanding of the complexities and heterogeneous functions of the inflammatory response in Alzheimer's is vastly improved. This review article will discuss some of the roles of neuroinflammation in Alzheimer's disease, in particular, how understanding heterogeneity in the individual inflammatory response can be used in therapeutic development and as a mechanism of personalizing our treatment of the disease.
-
Parkinson's Disease (PD) is a chronic and progressive neurodegenerative disorder of unknown etiology. Autopsy findings, genetics, retrospective studies, and molecular imaging all suggest a role for inflammation in the neurodegenerative process. ⋯ We analyze the evidence of immune system involvement in PD susceptibility, specifically in the context of M1 and M2 activation states. Tracking and modulating these activation states may provide new insights into both PD etiology and therapeutic strategies.
-
The pervasive reach of the inflammatory system is evidenced by its involvement in numerous disease states. Cardiovascular disease, marked by high levels of circulating inflammatory mediators, affects an estimated 83.6 million Americans. Similarly, human immunodeficiency virus (HIV) produces a paradoxical state of generalized immune activity despite widespread immunosuppression, and affects 35 million people worldwide. ⋯ In this combined disease state, immune mechanisms that are common to both CVD and HIV may interact to generate a progressive condition that contributes to the exacerbated pathogenesis of the other to the net effect of damage to the brain. In this review, we will outline inflammatory cell mediators that promote cardiovascular risk factors and disease initiation and detail how HIV-related proteins may accelerate this process. Finally, we examine the extent to which these comorbid conditions act as parallel, perpendicular, or progressive sequela of events to generate a neurodegenerative environment, and consider potential strategies that can be implemented to reduce the burden of CVD and inflammation in PLWH.
-
Review
The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease.
The proteins alpha-synuclein (αSyn) and leucine rich repeat kinase 2 (LRRK2) are both key players in the pathogenesis of the neurodegenerative disorder Parkinson's disease (PD), but establishing a functional link between the two proteins has proven elusive. Research studies for these two proteins have traditionally and justifiably focused in neuronal cells, but recent studies indicate that each protein could play a greater pathological role elsewhere. αSyn is expressed at high levels within neurons, but they also secrete the protein into the extracellular milieu, where it can have broad ranging effects in the nervous system and relevance to disease etiology. Similarly, low neuronal LRRK2 expression and activity suggests that LRRK2-related functions could be more relevant in cells with higher expression, such as brain-resident microglia. ⋯ Interestingly, both αSyn and LRRK2 can be linked to microglial function. Secreted αSyn can directly activate microglia, and can be taken up by microglia for clearance, while LRRK2 has been implicated in the intrinsic regulation of microglial activation and of lysosomal degradation processes. Based on these observations, the present review will focus on how PD-associated mutations in LRRK2 could potentially alter microglial biology with respect to neuronally secreted αSyn, resulting in cell dysfunction and neurodegeneration.
-
Multiple cellular systems exist to prevent uncontrolled inflammation in brain tissues; the suppressor of cytokine signaling (SOCS) proteins have key roles in these processes. SOCS proteins are involved in restricting cellular signaling pathways by enhancing the degradation of activated receptors and removing the stimuli for continued activation. There are eight separate SOCS genes that code for proteins with similar structures and properties. ⋯ Using human brain samples from the temporal cortex from ND and AD cases, SOCS-1 through SOCS-7 and CIS mRNA and SOCS-1 through SOCS-7 protein could be detected constitutively in ND and AD human brain samples. Although, the expression of key SOCS genes did not change to a large extent as a result of AD pathology, there were significantly increased levels of SOCS-2, SOCS-3 and CIS mRNA and increased protein levels of SOCS-4 and SOCS-7 in AD brains. In summary, there was no evidence of a deficit of these key inflammatory regulating proteins in aged or AD brains.