Neuroscience
-
Although much prior work has focused on the known cortical pathology that defines Alzheimer's disease (AD) histologically, recent work has additionally demonstrated substantial damage to the cerebral white matter in this condition. While there is large evidence of diffuse damage to the white matter in AD, it is unclear whether specific white matter tracts exhibit a more accelerated pattern of damage and whether the damage is associated with the classical neurodegenerative changes of AD. In this study, we investigated microstructural differences in the large fascicular bundles of the cerebral white matter of individuals with AD and mild cognitive impairment (MCI), using recently developed automated diffusion tractography procedures in the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset. ⋯ We additionally examined how white matter deterioration relates to hippocampal volume, a traditional imaging measure of AD pathology, and found the strongest negative correlations in AD patients between hippocampal volume and the diffusivities of the cingulum-angular and cingulum-cingulate gyrus bundles and of the corticospinal tracts (p<0.05). However, statistically controlling for hippocampal volume did not remove all group differences in white matter measures, suggesting a unique contribution of white matter damage to AD unexplained by this disease biomarker. These results suggest that (1) AD-associated deterioration of white matter fibers is greatest in tracts known to be connected to areas of pathology in AD and (2) lower white matter tract integrity is more diffusely associated with lower hippocampal volume indicating that the pathology in the white matter follows to some degree the neurodegenerative staging and progression of this condition.
-
GABA receptor type A (GABA(A)R)-mediated inhibition is divided into phasic and tonic inhibition. GABA(A)Rs mediating the two inhibitory modalities exhibit differences in subcellular localization and subunit composition. We previously demonstrated that phasic and tonic inhibition are independently regulated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA), respectively. ⋯ Thus, phasic and tonic inhibition might be independently regulated even by a single neuromodulator. Functionally, the opposite modulation of phasic and tonic inhibition decreased the summation of consecutive excitatory postsynaptic potentials (EPSPs) without affecting the shape of single EPSPs, which might underlie the suppression of the induction of long-term potentiation by 5-HT. These results suggest that the integrative regulation of phasic and tonic inhibition provides mechanisms for elaborate modulation of shape and summation of EPSPs and long-term synaptic plasticity.
-
Brain ischemia and reperfusion (I/R) injury occurs in various pathological conditions, but there is no effective treatment currently available in clinical practice. Methylene blue (MB) is a century-old drug with a newly discovered protective function in the ischemic stroke model. In the current investigation we studied the MB-induced neuroprotective mechanism focusing on stabilization and activation of hypoxia-inducible factor-1α (HIF-1α) in an in vitro oxygen and glucose deprivation (OGD)-reoxygenation model. ⋯ We conclude that MB protects the hippocampus-derived neuronal cells against OGD-reoxygenation injury by enhancing energy metabolism and increasing HIF-1α protein content accompanied by an activation of the EPO signaling pathway.
-
Stimuli paired with rewards acquire reinforcing properties to promote reward-seeking behavior. Previous work supports the role of ventral tegmental area (VTA) nicotinic acetylcholine receptors (nAChRs) in mediating conditioned reinforcement elicited by drug-associated cues. However, it is not known whether these cholinergic mechanisms are specific to drug-associated cues or whether VTA cholinergic mechanisms also underlie the ability of cues paired with natural rewards to act as conditioned reinforcers. ⋯ AP-5 robustly attenuated conditioned reinforcement and blocked discrimination between CR and NCR noseports at the 1-μg dose. MEC infusion decreased responding for both CR and NCR while 66.7-μg SCOP disrupted the subject's ability to discriminate between CR and NCR. Together, our data suggest that VTA NMDARs and mAChRs, but not nAChRs, play a role in the ability of natural reward-associated cues to act as conditioned reinforcers.
-
Properties of excitatory synaptic responses in fast-spiking interneurons (FSIs) and pyramidal neurons (PNs) are different; however, the mechanisms and determinants of this diversity have not been fully investigated. In the present study, voltage-clamp recording of miniature excitatory post-synaptic currents (mEPSCs) was performed of layer 2-3 FSIs and PNs in the medial prefrontal cortex of rats aged 19-22days. The average mEPSCs in the FSIs exhibited amplitudes that were two times larger than those of the PNs and with much faster rise and decay. ⋯ In the FSIs, the distributions were well approximated only by a sum of two such functions, suggesting the presence of at least two subpopulations of events with different modal amplitudes. According to our estimates, two-thirds of the mEPSCs in FSIs belong to the high-amplitude subpopulation, and the modal amplitude in this subpopulation is approximately two times larger than that in the low-amplitude subpopulation. Using different statistical models, varying binning size, and data subsets, we confirmed the robustness and consistency of these findings.