Neuroscience
-
Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. ⋯ We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the defect in neuronal-circuits of hippocampus (DG-CA4-CA1-Sub) that were significantly damaged leading to memory impairment. Interestingly, RSV was observed to culminate pathological events in the hippocampal neuronal circuit during aging, proving them as potent therapeutic drug against age-associated neurodegeneration and memory loss.
-
We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. ⋯ Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise contributed to increased mitochondrial plasticity leading to a more robust phenotype.
-
Glutamate and nitric oxide (NO) are important regulators of dendrite and axon development in the central nervous system. Excess glutamatergic stimulation is a feature of many pathological conditions and manifests in neuronal atrophy and shrinkage with eventual neurodegeneration and cell death. Here we demonstrate that treatment of cultured primary cortical rat neurons for 24h with glutamate (500μM) or N-methyl-d-aspartate (NMDA) (100-500μM) combined with glycine suppresses neurite outgrowth. ⋯ Treatment with the small-molecule inhibitors of the PSD-95/nNOS interface 2-((1H-benzo[d] [1,2,3]triazol-5-ylamino) methyl)-4,6-dichlorophenol (IC87201) (10 and 100nM) and 4-(3,5-dichloro-2-hydroxy-benzylamino)-2-hydroxybenzoic acid (ZL-006) (10 and 100nM) attenuated NMDA/glycine-induced decreases in neurite outgrowth. These data support the hypothesis that targeting the NMDA-R/PSD-95/nNOS interaction downstream of NMDA-R promotes neurotrophic effects by preventing neurite shrinkage in response to excess glutamatergic stimulation. The PSD-95/nNOS interface may be an attractive target for treating deficits in neuronal outgrowth and atrophy associated with excessive glutamatergic neurotransmission in neurodevelopmental and neurodegenerative conditions.
-
Opioid-induced rewarding and motorstimulant effects are mediated by an increased activity of the ventral tegmental area (VTA) dopamine (DA) neurons. The excitatory mechanism of opioids on VTA-DA neurons has been proposed to be due to the depression of GABAergic synaptic transmission in VTA-DA neurons. ⋯ Our results showed that (1) DAMGO inhibits GABAergic inputs in VTA-DA neurons at presynaptic sites; (2) effect of DAMGO on GABAergic inputs in VTA-DA neurons is inhibited by potassium channel blocker 4-aminopyridine (4-AP) and Gi protein inhibitor N-ethylmaleimide (NEM); (3) phospholipase A2 (PLA2) does not mediate the effect of DAMGO on GABAergic inputs in VTA-DA neurons, but mediates it in the periaqueductal gray (PAG); (4) multiple downstream signaling molecules of μ receptors do not mediate the effect of DAMGO on GABAergic inputs in VTA-DA neurons. These results suggest that DAMGO depresses inhibitory synaptic transmission via μ receptor-Gi protein-Kv channel pathway in VTA-DA neurons, but via μ receptor-PLA2 pathway in PAG neurons.
-
A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. ⋯ Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.