Neuroscience
-
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment that ultimately leads to death. Endothelin (ET) and its receptors have been considered as therapeutic targets for AD. Recent studies in our lab have shown that stimulation of ETB receptors provide significant neuroprotection following Aβ1-40 administration. ⋯ Pretreatment with BQ788 blocked the effects of IRL-1620, thus confirming the role of ETB receptors in the neurovascular remodeling actions of IRL-1620. Results of the present study demonstrate that IRL-1620 improves both acquisition (learning) and retention (memory) on the water maze task and enhances angiogenic and neurogenic remodeling. These findings indicate that the ETB receptor may be a novel therapeutic target for AD and other neurovascular degenerative disorders.
-
In the central nervous system (CNS), insulin resistance (I/R) can cause defective neurite outgrowth and neuronal cell death, which can eventually lead to cognitive deficits. Recent research has focused on the relationship between I/R and the cognitive impairment caused by dementia, with the goal of developing treatments for dementia. Insulin signal transduction mediated by insulin receptor substrate (IRS-1) has been thoroughly studied in the CNS of patients with I/R. ⋯ To investigate the changes caused by the inhibition of IRS-1-mediated insulin signaling in neuroblastoma cells, we performed Western blot analysis, reverse transcription-PCR, and immunochemical analysis. We show that the deactivation of IRS-1-mediated insulin signaling can inhibit neuronal outgrowth and aggravate neuronal cell death in the insulin-resistant CNS. Thus, IRS-1-mediated insulin signal transduction may be an important factor in the treatment of cognitive decline induced by I/R.
-
Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. ⋯ However the FS prior to the CFA injection enhanced the mechanical hyperalgesia and attenuated the expression of pCREB and ΔFosB and the acetylation of histone H3 in the IC. There was no significant difference in the numbers of ΔFosB-IR cells in the bilateral PIC between the FS+CFA and naive groups. These findings suggest neuroplasticity in the IC after the FS, which may be involved in the enhancement of CFA-induced mechanical hyperalgesia through dysfunction of the descending pain modulatory system.
-
Hemorrhagic transformation (HT) is a feared complication of cerebral ischemic infarction, especially following the use of thrombolytic therapy. In this study, we examined whether docosahexaenoic acid (DHA; 22:6n-3), an omega-3 essential fatty acid family member, can protect the brain from injury and whether DHA can decrease the risk of HT enhanced by hyperglycemia after focal ischemic injury. Male Sprague-Dawley rats were injected with 50% dextrose (6ml/kg intraperitoneally) to induce hyperglycemia 10min before 1.5h of filament middle cerebral artery occlusion (MCAO) was performed. ⋯ Reduced Evans Blue extravasation and increased expression of collagen IV indicated the improved integrity of the blood-brain barrier (BBB) in DHA-treated rats. Moreover, DHA reduced the expression of the intercellular adhesion molecule-1 (ICAM-1) in the ischemic injured brain. Therefore, we conclude that DHA attenuated hyperglycemia-enhanced HT and improved neurological function by preserving the integrity of BBB and reducing inflammation.
-
Brain ischemia/reperfusion injury results in death of vulnerable neurons and extensive brain damage. It is well known that mitochondrial release of cytochrome c (cyto c) is a hallmark of neuronal death, however the molecular events underlying this release are largely unknown. ⋯ We found that ischemia/reperfusion induces cyto c release and cell death that corresponds to multiple changes in OPA1, including: (i) translocation of the mitochondrial fusion protein OPA1 from the mitochondria to the cytosol, (ii) increase in the short isoform of OPA1, suggestive of proteolytic processing, (iii) breakdown of OPA1 oligomers in the mitochondria, and (iv) increased mitochondrial fission. Thus, we present novel evidence of a connection between release of cyto c from mitochondria and disruption of the mitochondrial fusion.