Neuroscience
-
The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. ⋯ We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.
-
While prolonged sleep deprivation (SD) could lead to profound negative health consequences, such as impairments in vital biological functions of immunity and cognition, melatonin possesses powerful ameliorating effects against those harmful insults. Melatonin has strong antioxidant and anti-inflammatory effects that help to restore body's immune and cognitive functions. In this study, we investigated the possible role of melatonin in reversing cognitive dysfunction induced by SD in rats. ⋯ Interestingly, melatonin treatment normalized these events to control levels following SD. Our data demonstrate that SD induces oxidative stress through glial activation and decreases FMRP expression in the neurons. Furthermore, our results suggest the efficacy of melatonin for the treatment of sleep-related neuronal dysfunction, which occurs in neurological disorders such as Alzheimer's disease and autism.
-
Daily intermittent access to sugar solutions results in intense bouts of sugar intake (i.e. bingeing) in rats. Bingeing on sucrose, a disaccharide of glucose and fructose, has been associated with a "primed" mesolimbic dopamine (DA) pathway. Recent studies suggest glucose and fructose engage brain reward and energy-sensing mechanisms in opposing ways and may drive sucrose intake through unique neuronal circuits. ⋯ Similar magnitudes of cocaine CPP were observed in rats with a history of sucrose, fructose or chow (control) bingeing. Notably, the glucose-bingeing rats did not demonstrate a significant cocaine CPP despite showing similar cocaine-induced locomotor activity as the other diet groups. Overall, these results show that fructose and glucose, the monosaccharide components of sucrose, produce divergent degrees of bingeing and cocaine reward.
-
Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. ⋯ PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure.
-
Hippocampus displays functional heterogeneity along its long axis which has been interpreted in terms of segregation of inputs. Recent evidence has shown that there are also important differences in the organization of the local neuronal circuitry between the dorsal (DH) and the ventral hippocampus (VH). Synaptic plasticity is a crucial factor for the function of the hippocampal circuit. ⋯ Blockade of GABAA receptors (GABAARs) increased the maximum area of EPSP more in VH than in DH and reversed facilitation into GABABR-dependent depression that was more robust in DH than in VH. I conclude that interactions between the synaptic actions of GABABR, GABAAR, and NMDAR contribute to diversifying short-term synaptic plasticity along the dorsoventral axis of the hippocampus. It is hypothesized that this diversification has important implications for the information processing performed by the local circuitries of the two hippocampal segments.