Neuroscience
-
Heparan sulfate proteoglycans (HSPGs) have important functions in development of the central nervous system; however, their functions in nerve injury are not yet fully understood. We previously reported the expression of syndecan-1, a type of HSPG, in cranial motor neurons after nerve injury, suggesting the importance of syndecan-1 in the pathology of motor nerve injury. In this study, we examined the expression of syndecan-1, a type of HSPG, in primary sensory neurons after nerve injury in mice. ⋯ Not only sciatic nerve axotomy, infraorbital nerve axotomy also induced the expression of syndecan-1 in trigeminal ganglion neurons. Moreover, syndecan-1 knockdown in cultured DRG neurons induced a shorter neurite extension. These results suggest that syndecan-1 expression in injured primary sensory neurons may have functional roles in nerve regeneration and synaptic plasticity, resulting in the development of neuropathic pain.
-
Orexins/hypocretins (OXA and OXB) are two hypothalamic peptides involved in the regulation of many physiological processes including the sleep-wake cycle, food intake and arousal. The orexinergic system of the lateral hypothalamus is considered a non-specific peptidergic system, and its nerve fibers innervate numerous brain areas. Among many targets of orexinergic neurons is the intergeniculate leaflet (IGL) of the thalamus - a small but important structure of the mammalian biological clock. ⋯ We observed an increase of GABA release onto the investigated IGL neuron after OXA application, consistent with a presynaptic localization of the orexin receptors. An increase in miniature excitatory postsynaptic current frequency was not observed within the IGL. Our findings reinforce the connection between circadian clock physiology and the orexinergic system.
-
Traumatic brain injury (TBI) is a major risk factor for dementia. Recently, TBI has also been suggested as a risk factor for frontotemporal dementia (FTD), and plasma immunoreactivity to the TAR-DNA binding protein 43 (TDP-43) has been observed in both patients with acute TBI and long-term survivors of this condition. We used a population-based study to estimate and compare the risk of FTD in individuals with and without TBI. ⋯ Further, the behavioral impairments were likely associated with TDP-43 short fragment mislocalization and accumulation. Our findings suggest that in humans, TBI is associated with a greater occurrence of FTD. Moreover, clinical FTD manifestations may be associated with TDP-43 proteolysis, since impaired behaviors in TBI rats were reminiscent of those in humans with FTD.
-
Convergent evidence suggests that the lateral frontal cortex is at the heart of a brain network subserving cognitive control. Recent theories assume a functional segregation along the rostro-caudal axis of the lateral frontal cortex based on differences in the degree of complexity of cognitive control. However, the functional contribution of specific rostral and caudal sub-regions remains elusive. ⋯ Participants performed three different task-switching conditions that assessed differences in the degree of complexity of cognitive control processes, after temporally disrupting rostral, or caudal target regions, or a control region. Disrupting the rostral lateral frontal region specifically impaired behavioral performance of the most complex task-switching condition, in comparison to the caudal target region and the control region. These novel findings shed light on the neuroanatomical architecture supporting control over goal-directed behavior.
-
Assessment of awareness in patients with disorders of consciousness such as patients in a vegetative state (unresponsive wakefulness syndrome, UWS) and patients in a minimally conscious state (MCS) remains difficult, with a high rate of misdiagnosis (around 40%). While patients with UWS have no awareness, patients with MCS have partial preservation of conscious awareness. To improve the assessment of awareness in these patients, recent functional neuroimaging protocols have been developed. ⋯ The correlation-based method obtained the best results with an error rate of 4.2%. The results of this study demonstrate that fMRI-based communication paradigms may not be robust enough to reliably detect awareness in all aware patients. There is still a need to develop new statistical and analytical methods before considering their generalization in clinical routine.