Neuroscience
-
The presence of mRNAs in synaptic terminals and their regulated translation are important factors in neuronal communication and plasticity. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in the translocation, stability, and subcellular localization of mRNA and the regulation of its translation. Defects in these processes and mutations in components of the hnRNP complexes have been related to the formation of cytoplasmic inclusion bodies and neurodegenerative diseases. ⋯ In this report we present further biochemical and molecular characterization that shows endogenous p65 to be an SDS-stable dimer composed of ∼37-kDa hnRNPA/B-like subunits. We cloned and expressed a recombinant protein corresponding to squid hnRNPA/B-like protein and showed its propensity to aggregate and form SDS-stable dimers in vitro. Our data suggest that this unique hnRNPA/B-like protein co-localizes with synaptic vesicle protein 2 and RNA-binding protein ELAV and thus may serve as a link between local mRNA processing and presynaptic function and regulation.
-
Depression is one of the most common psychiatric symptoms in patients with Parkinson's disease (PD). Some authors have reported that depression is characterized by activation of the inflammatory response. Animal models of PD also present with depressive-like behavior, such as increased immobility time in the modified forced swim test and anhedonia-like behavior in the sucrose preference test. ⋯ In the forced swim test, the 6-OHDA+saline group exhibited significant reductions in swimming time and increased immobility time compared with the sham+saline. In the sucrose preference test, the 6-OHDA+piroxicam group exhibited no reduction of sucrose preference compared with the sham+saline, with significant effects of treatment and time and a significant treatment×time interaction. 5-Hydroxytryptamine (5-HT) levels significantly decreased in the hippocampus in the 6-OHDA+saline group and not changed in the 6-OHDA+piroxicam group when compared with the sham+saline on day 21. In conclusion, 21-day treatment with piroxicam reversed the onset of depressive-like behavior and prevented the reduction of hippocampal 5-HT levels.
-
Triheptanoin, an oily substance, consists of glycerol bound to three molecules of heptanoic acid, a C7 odd-chain fatty acid. A triheptanoin-rich diet has anaplerotic effects because heptanoate metabolism yields succinate which delivers substrates to the Krebs cycle. While previous studies on the effects of triheptanoin focused on metabolic disorders and epilepsy, we investigated triheptanoin's effect on ischemic stroke. ⋯ We conclude that triheptanoin-fed mice which sustained an experimental stroke had a significantly improved neurological outcome. This beneficial effect is apparently due to an improvement of mitochondrial function and preservation of the cellular energy state. Our findings identify triheptanoin as a promising new dietary agent for neuroprotection.
-
Adenosine (Ado) and non-adenosine (non-Ado) nucleosides such as inosine (Ino), guanosine (Guo) and uridine (Urd) may have regionally different roles in the regulation of physiological and pathophysiological processes in the central nervous system (CNS) such as epilepsy. It was demonstrated previously that Ino and Guo decreased quinolinic acid (QA)-induced seizures and Urd reduced penicillin-, bicuculline- and pentylenetetrazole (PTZ)-induced seizures. It has also been demonstrated that Ino and Urd may exert their effects through GABAergic system by altering the function of GABA(A) type of gamma-aminobutyric acid receptors (GABAA receptors) whereas Guo decreases glutamate-induced excitability through glutamatergic system, which systems (GABAergic and glutamatergic) are involved in pathomechanisms of absence epilepsy. ⋯ We found that Guo decreased the number of spike-wave discharges (SWDs) whereas Ino increased it dose-dependently. We strengthened that Urd can decrease absence epileptic activity. Our results suggest that Guo, Urd and their analogs could be potentially effective drugs for treatment of human absence epilepsy.
-
Adult neurogenesis occurs in mammals within the dentate gyrus, a hippocampal subarea. It is known to be induced by antidepressant treatment and reduced in response to nicotine administration. We checked here whether the antidepressant fluoxetine would inverse the decrease in hippocampal neurogenesis caused by nicotine. ⋯ Expression of nicotine-induced CPP was accompanied by an increase of phospho-CREB (cyclic AMP-responsive element-binding protein) and HDAC2 (histone deacetylase 2) expression in the nucleus accumbens. The data suggest that fluoxetine reward, as opposed to nicotine reward, depends on dentate gyrus neurogenesis. Since fluoxetine was able to disrupt the association between nicotine and the environment, this antidepressant may be tested as a treatment for nicotine addiction using cue exposure therapy.