Neuroscience
-
Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. ⋯ We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the defect in neuronal-circuits of hippocampus (DG-CA4-CA1-Sub) that were significantly damaged leading to memory impairment. Interestingly, RSV was observed to culminate pathological events in the hippocampal neuronal circuit during aging, proving them as potent therapeutic drug against age-associated neurodegeneration and memory loss.
-
A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. ⋯ Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.
-
Probenecid has been used for decades to treat gout, and recent studies have revealed it is also a specific inhibitor of the pannexin-1 channel. It has been reported that the pannexin-1 channel is involved in ischemic injury. Here, we investigated the neuroprotective effect and the possible mechanisms of action of probenecid in global cerebral ischemia/reperfusion (I/R) injury in rats. ⋯ The release of cathepsin B and overexpression of calpain-1 after reperfusion were inhibited, while the upregulation of Hsp70 was strengthened by probenecid pre-treatment. Furthermore, the activation and proliferation of microglia and astrocytes after I/R injury were suppressed by continuous given for 7days, but only partly by a single dose at 6h of reperfusion. Thus, our data indicate that probenecid protects against transient global cerebral I/R injury probably by inhibiting calpain-cathepsin pathway and the inflammatory reaction.
-
The arrival and refinement of corticospinal afferents are likely to influence the maturation of the spinal cord and sensory-motor networks. To understand this better, we studied the revision of monosynaptic muscle afferents, the expression of activity-related genes, neurotrophins and their receptors in the cervical spinal cord from postnatal day (P) 0 to 21. We compared control and Celsr3|Emx1 mice, in which corticospinal axons never develop. ⋯ In control spinal cord, NT3 was increased at P7 and decreased at P14, but remained more stable in mutant samples. In contrast, expression profiles of brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase (Trk) B, TrkC, p75 neurotrophin receptor (p75(NTR)) and glial cell-line-derived neurotrophic factor (GDNF) were similar in both genotypes. In conclusion, with the possible exception of CNTF and NT3 expression, most events that accompany maturation of the spinal cord appear largely independent of corticospinal inputs.
-
GABA receptor type A (GABA(A)R)-mediated inhibition is divided into phasic and tonic inhibition. GABA(A)Rs mediating the two inhibitory modalities exhibit differences in subcellular localization and subunit composition. We previously demonstrated that phasic and tonic inhibition are independently regulated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA), respectively. ⋯ Thus, phasic and tonic inhibition might be independently regulated even by a single neuromodulator. Functionally, the opposite modulation of phasic and tonic inhibition decreased the summation of consecutive excitatory postsynaptic potentials (EPSPs) without affecting the shape of single EPSPs, which might underlie the suppression of the induction of long-term potentiation by 5-HT. These results suggest that the integrative regulation of phasic and tonic inhibition provides mechanisms for elaborate modulation of shape and summation of EPSPs and long-term synaptic plasticity.