Neuroscience
-
Properties of excitatory synaptic responses in fast-spiking interneurons (FSIs) and pyramidal neurons (PNs) are different; however, the mechanisms and determinants of this diversity have not been fully investigated. In the present study, voltage-clamp recording of miniature excitatory post-synaptic currents (mEPSCs) was performed of layer 2-3 FSIs and PNs in the medial prefrontal cortex of rats aged 19-22days. The average mEPSCs in the FSIs exhibited amplitudes that were two times larger than those of the PNs and with much faster rise and decay. ⋯ In the FSIs, the distributions were well approximated only by a sum of two such functions, suggesting the presence of at least two subpopulations of events with different modal amplitudes. According to our estimates, two-thirds of the mEPSCs in FSIs belong to the high-amplitude subpopulation, and the modal amplitude in this subpopulation is approximately two times larger than that in the low-amplitude subpopulation. Using different statistical models, varying binning size, and data subsets, we confirmed the robustness and consistency of these findings.
-
Neurodegenerative diseases are difficult to study due to unavailability of human neurons. Cell culture systems and primary rodent cultures have shown to be indispensable to clarify disease mechanisms and provide insights into gene functions. Nevertheless, it is hard to translate new findings into new medicines. ⋯ Addition of C6 glioma conditioned medium improved the bursting frequency of cells without further maturation or evidence for glutamatergic responses. Furthermore, cells were suitable for lentiviral transduction within the tested time frame. Altogether, iCell® neurons might be useful to model neurodegenerative diseases in which young GABAergic subtypes are affected.
-
Treatment of apnea of prematurity with methylxanthines like caffeine, aminophylline or theophylline can evoke hippocampal seizures. However, it is unknown at which interstitial brain concentrations methylxanthines promote such neonatal seizures or interfere with physiological 'early network oscillations' (ENOs) that are considered as pivotal for maturation of hippocampal neural networks. We studied theophylline and caffeine effects on ENOs in CA3 neurons (CA3-ENOs) and CA3 electrical stimulation-evoked monosynaptic CA1 field potentials (CA1-FPs) in sliced and intact hippocampi, respectively, from 8 to 10-days-old rats. ⋯ GABAA receptor blockade induced seizure-like discharges and occluded theophylline-evoked seizure-like discharges in the slices, but not in the intact hippocampi. In summary, submillimolar methylxanthine concentrations do not acutely affect spontaneous CA3-ENOs or electrically evoked synaptic activities and low millimolar doses are needed to evoke seizure-like discharges in isolated developing hippocampal neural networks. We conclude that mechanisms of methylxanthine-related seizure-like discharges do not involve SERCA inhibition-related neuronal Ca(2+) dysregulation, PDE4 blockade or adenosine and glycine receptor inhibition, whereas GABA(A) receptor blockade may contribute partially.
-
We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. ⋯ Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise contributed to increased mitochondrial plasticity leading to a more robust phenotype.
-
Neuropeptide B and W (NPB and NPW) are cognate peptide ligands for NPBWR1 (GPR7), a G protein-coupled receptor. In rodents, they have been implicated in the regulation of energy homeostasis, neuroendocrine/autonomic responses, and social interactions. Although localization of these peptides and their receptors in adult rodent brain has been well documented, their expression in mouse brain during development is unknown. ⋯ The majority of these postnatal hypothalamic NPW neurons co-express NPY mRNA. A cross of NPW-iCre knock-in mice with a Cre-dependent tdTomato reporter line revealed that more than half of the reporter-positive neurons in the adult DMH, which mature from the transiently NPW-expressing neurons, are sensitive to peripherally administrated leptin. These data suggest that the DMH neurons that transiently co-express NPW and NPY in the peri-weaning period might play a role in regulating energy homeostasis during postnatal development.