Neuroscience
-
The prominent morphometric alterations of Alzheimer's disease (AD) occur both in gray matter and in white matter. Multimodal fusion can examine joint information by combining multiple neuroimaging datasets to identify the covariant morphometric alterations in AD in greater detail. ⋯ The joint IC maps revealed that the simultaneous changes in the gray matter and FA values primarily involved the following areas: (1) the temporal lobe/hippocampus-cingulum, (2) the frontal/cingulate gyrus-corpus callosum, and (3) the temporal/occipital/parietal lobe-corpus callosum/corona radiata. Our findings suggest that gray matter atrophy is associated with reduced white matter fiber integrity in AD and possibly expand the understanding of the neuropathological mechanisms in AD.
-
The human brain is composed of complex networks of 100 billion neurons that underlie its higher functions. The set of neural connections in the brain has recently attracted growing interest from the scientific community. It is important to identify individual differences in these neural connections to study the background of individual differences in brain function and performance. ⋯ There were no large differences in the Euclidean distance among different combinations of scanners used or between image pairs with and without scanner upgrade. The results indicate that brain diffusivity can identify a specific individual; i.e., the pattern of brain diffusion is personally identifiable information. Individual differences in brain diffusivity will form the basis of individual differences in personality and brain function.
-
Treatment of apnea of prematurity with methylxanthines like caffeine, aminophylline or theophylline can evoke hippocampal seizures. However, it is unknown at which interstitial brain concentrations methylxanthines promote such neonatal seizures or interfere with physiological 'early network oscillations' (ENOs) that are considered as pivotal for maturation of hippocampal neural networks. We studied theophylline and caffeine effects on ENOs in CA3 neurons (CA3-ENOs) and CA3 electrical stimulation-evoked monosynaptic CA1 field potentials (CA1-FPs) in sliced and intact hippocampi, respectively, from 8 to 10-days-old rats. ⋯ GABAA receptor blockade induced seizure-like discharges and occluded theophylline-evoked seizure-like discharges in the slices, but not in the intact hippocampi. In summary, submillimolar methylxanthine concentrations do not acutely affect spontaneous CA3-ENOs or electrically evoked synaptic activities and low millimolar doses are needed to evoke seizure-like discharges in isolated developing hippocampal neural networks. We conclude that mechanisms of methylxanthine-related seizure-like discharges do not involve SERCA inhibition-related neuronal Ca(2+) dysregulation, PDE4 blockade or adenosine and glycine receptor inhibition, whereas GABA(A) receptor blockade may contribute partially.
-
Properties of excitatory synaptic responses in fast-spiking interneurons (FSIs) and pyramidal neurons (PNs) are different; however, the mechanisms and determinants of this diversity have not been fully investigated. In the present study, voltage-clamp recording of miniature excitatory post-synaptic currents (mEPSCs) was performed of layer 2-3 FSIs and PNs in the medial prefrontal cortex of rats aged 19-22days. The average mEPSCs in the FSIs exhibited amplitudes that were two times larger than those of the PNs and with much faster rise and decay. ⋯ In the FSIs, the distributions were well approximated only by a sum of two such functions, suggesting the presence of at least two subpopulations of events with different modal amplitudes. According to our estimates, two-thirds of the mEPSCs in FSIs belong to the high-amplitude subpopulation, and the modal amplitude in this subpopulation is approximately two times larger than that in the low-amplitude subpopulation. Using different statistical models, varying binning size, and data subsets, we confirmed the robustness and consistency of these findings.
-
The effects of mitochondrial inhibitors (CN(-), a complex IV inhibitor and CCCP, protonophore) on catecholamine (CA) secretion and mitochondrial function were explored functionally and biochemically in rat and guinea-pig adrenal chromaffin cells. Guinea-pig chromaffin cells conspicuously secreted CA in response to CN(-) or CCCP, but rat cells showed a little, if any, secretory response to either of them. The resting metabolic rates in rat adrenal medullae did not differ from those in guinea-pig adrenal medullae. ⋯ The extent of CCCP-induced decrease in cellular ATP in guinea-pig chromaffin cells, which was indirectly measured using a Mg(2+) indicator, was smaller than that in rat chromaffin cells. Relative expression levels of F1F0-ATPase inhibitor factor in guinea-pig adrenal medullae were smaller than in rat adrenal medullae, and the opposite was true for F1F0-ATPase α subunit. The present results indicate that guinea-pig chromaffin cells secrete more CA in response to a mitochondrial inhibitor than rat chromaffin cells and this higher susceptibility in the former is accounted for by a larger extent of reversed operation of F1F0-ATPase with the consequent decrease in ATP under conditions where ΔΨm is depolarized.