Neuroscience
-
Chronic discontinuous use of many psychomotor stimulants leads to behavioral sensitization and, owing to it shares common mechanisms with relapse, most researchers use its animal model to explore the neurobiological mechanisms of addiction. Recent studies have proved that N-methyl-d-aspartate receptors (NMDARs) are implicated in psychomotor stimulant-induced behavioral sensitization. However, the function of GluN2B-containing NMDARs and their potential downstream cascade(s) in the acquisition and expression of behavioral sensitization to methamphetamine (METH) have not been explored. ⋯ Moreover, chronic METH administration increased pERK1/2/ERK1/2 level in the NAc. In conclusion, GluN2B-containing NMDARs contribute to both the acquisition and expression of behavioral sensitization to METH in mice. Furthermore, the acquisition phase might be mediated by the Ras-ERK1/2-ΔFosB cascade in the CPu while the expression phase may be regulated by the Ras-ERK1/2 cascade in the CPu.
-
Patients with Parkinson's disease (PD) often present with bimanual coordination deficits whose exact origins remain unclear. One aspect of bimanual coordination is inter-limb coupling. This is characterized by the harmonization of movement parameters between limbs. ⋯ However, PD patients did not exhibit spatial inter-limb coupling. Again, this was not altered by medication or stimulation. Collectively, the results suggest that structures independent of the dopaminergic system and basal ganglia may mediate temporal and spatial inter-limb coupling.
-
The autosomal recessive Hereditary Motor and Sensory Neuropathy with Agenesis of the Corpus Callosum (HMSN/ACC) is associated with the dysfunction of the K(+)-Cl(-) cotransporter type 3 (KCC3), which is an electroneutral cotransporter. We previously found that the inhibition of KCC3 cotransporter activity reduces the propagation of action potentials in the peripheral nervous system (PNS). However, the pathogenesis by which KCC3 deficiency impairs peripheral nerve function remains to be examined. ⋯ However, electrophysiological studies using the threshold tracking technique indicated a reduced stimulus-response curve slope with an elevated rheobase, a decreased strength-duration time constant, diminished persistent Na(+) currents, and an outward deviation of threshold electrotonus in KCC3(-/-) nerves compared to wild-type nerves. These functional changes indicate an overall reduction in axonal excitability and suggest an increase in paranodal conductance, which was relevant to the pathology at the paranode. Altogether, our findings highlight the importance of KCC3 in maintaining paranodal integrity and in optimizing the propagation of action potentials along peripheral nerves.
-
Microinjection of morphine into the periaqueductal gray (PAG) produces antinociception. In vitro slice recordings indicate that all PAG neurons are sensitive to morphine either by direct inhibition or indirect disinhibition. We tested the hypothesis that all PAG neurons respond to opioids in vivo by examining the extracellular activity of PAG neurons recorded in lightly anesthetized and awake rats. ⋯ Changes in activity caused by morphine were surprisingly modest (a median increase from 0.7 to 1.3Hz). The small inconsistent effects of morphine are in stark contrast to the large changes produced by morphine on the activity of rostral ventromedial medulla (RVM) neurons or the widespread inhibition and excitation of PAG neurons treated with opioids in in vitro slice experiments. The relatively modest effects of morphine in the present study suggest that morphine produces antinociception by causing small changes in the activity of many PAG neurons.