Neuroscience
-
Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. ⋯ Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.
-
Somatosensory information from the limbs reaches the contralateral Primary Sensory Cortex (S1) with a delay of 23ms for finger, and 40ms for leg (somatosensory N20/N40). Upon arrival of this input in the cortex, motor evoked potentials (MEPs) elicited by Transcranial Magnetic Stimulation (TMS) are momentarily inhibited. This phenomenon is called 'short latency afferent inhibition (SAI)' and can be used as a tool for investigating sensorimotor interactions in the brain. ⋯ No ipsilateral SAI was detected in the lower limb (TA) at any of the tested ISIs. The delayed onset timing of ipsilateral SAI suggests that transcallosal communication mediates this inhibitory process for the upper limb. The complete absence of ipsilateral SAI in the lower limb warrants consideration of the potential limb-specific differences in demands for bilateral sensorimotor integration.
-
Characterizing how the brain appraises the psychological dimensions of reward is one of the central topics of neuroscience. It has become clear that dopamine neurons are implicated in the transmission of both rewarding information and aversive and alerting events through two different neuronal populations involved in encoding the motivational value and the motivational salience of stimuli, respectively. Nonetheless, there is less agreement on the role of the ventromedial prefrontal cortex (vmPFC) and the related neurotransmitter release during the processing of biologically relevant stimuli. ⋯ We observed a decrease of GABA and no changes in Glx concentration in the vmPFC in both conditions. Furthermore, a comparatively smaller GABA reduction during the observation of appetitive food images than during the observation of disgusting food images was positively correlated with the scores obtained to the body image concerns sub-scale of Body Uneasiness Test (BUT). These results are consistent with the idea that the vmPFC plays a crucial role in processing both rewarding and aversive stimuli, possibly by encoding stimulus salience through glutamatergic and/or noradrenergic projections to deeper mesencephalic and limbic areas.
-
The p21-activated kinases (PAKs) of group I are the main effectors for the small Rho GTPases, critically involved in neurodevelopment, plasticity and maturation of the nervous system. Moreover, the neuronal complexity controlled by PAK1/PAK3 signaling determines the postnatal brain size and synaptic properties. Stress induces alterations at the level of structural and functional synaptic plasticity accompanied by reductions in size and activity of the hippocampus and the prefrontal cortex (PFC). ⋯ No differences were observed for the ubiquitously expressed PAK2. Following analysis of gene coexpression demonstrated disruption of coordinated gene expression in the brain of subjects with depression. Abnormalities in mRNA expression of PAK1 and PAK3 as well as their altered coexpression patterns were detected in the brain of subjects with depression.
-
In the last decades it has been shown that two components of the event-related potentials (ERPs), the feedback-related negativity (FRN) and the P300, reflect the evaluation of the outcomes of a given course of action. Within the reinforcement learning theory, the prevailing interpretation of the relationship between FRN and P300 is the classical "independent coding model". This model proposes that the FRN is only sensitive to feedback valence whereas the P300 is only sensitive to feedback magnitude. ⋯ Regarding magnitude, this only affects the feedback P300, and only in conjunction with difficulty. Finally, we found that task difficulty has the opposite effect on these components, both in their latencies and discriminability. Our results suggest that the FRN and the feedback-P300 in fact reflect different performance monitoring processes in a flexible way that depends on the behavioral context.