Neuroscience
-
Paclitaxel is a first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Previous preclinical studies indicate mitochondrial dysfunction and oxidative stress are associated with this disorder; however no direct assessment of reactive oxygen species (ROS) levels and antioxidant enzyme activity in sensory neurons following paclitaxel has been undertaken. As expected, repeated low doses of systemic paclitaxel in rats induced long-lasting pain behaviour with a delayed onset, akin to the clinical scenario. ⋯ In peripheral sensory nerves, CuZnSOD activity was increased at day 7, and at peak pain, MnSOD, CuZnSOD and GPx activity were increased. Catalase activity was unaltered in DRG and saphenous nerves. These data suggest that neuronally-derived mitochondrial ROS, accompanied with an inadequate endogenous antioxidant enzyme response, are contributory factors in paclitaxel-induced painful neuropathy.
-
Characterizing how the brain appraises the psychological dimensions of reward is one of the central topics of neuroscience. It has become clear that dopamine neurons are implicated in the transmission of both rewarding information and aversive and alerting events through two different neuronal populations involved in encoding the motivational value and the motivational salience of stimuli, respectively. Nonetheless, there is less agreement on the role of the ventromedial prefrontal cortex (vmPFC) and the related neurotransmitter release during the processing of biologically relevant stimuli. ⋯ We observed a decrease of GABA and no changes in Glx concentration in the vmPFC in both conditions. Furthermore, a comparatively smaller GABA reduction during the observation of appetitive food images than during the observation of disgusting food images was positively correlated with the scores obtained to the body image concerns sub-scale of Body Uneasiness Test (BUT). These results are consistent with the idea that the vmPFC plays a crucial role in processing both rewarding and aversive stimuli, possibly by encoding stimulus salience through glutamatergic and/or noradrenergic projections to deeper mesencephalic and limbic areas.
-
The p21-activated kinases (PAKs) of group I are the main effectors for the small Rho GTPases, critically involved in neurodevelopment, plasticity and maturation of the nervous system. Moreover, the neuronal complexity controlled by PAK1/PAK3 signaling determines the postnatal brain size and synaptic properties. Stress induces alterations at the level of structural and functional synaptic plasticity accompanied by reductions in size and activity of the hippocampus and the prefrontal cortex (PFC). ⋯ No differences were observed for the ubiquitously expressed PAK2. Following analysis of gene coexpression demonstrated disruption of coordinated gene expression in the brain of subjects with depression. Abnormalities in mRNA expression of PAK1 and PAK3 as well as their altered coexpression patterns were detected in the brain of subjects with depression.
-
Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). ⋯ In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.
-
In the last decades it has been shown that two components of the event-related potentials (ERPs), the feedback-related negativity (FRN) and the P300, reflect the evaluation of the outcomes of a given course of action. Within the reinforcement learning theory, the prevailing interpretation of the relationship between FRN and P300 is the classical "independent coding model". This model proposes that the FRN is only sensitive to feedback valence whereas the P300 is only sensitive to feedback magnitude. ⋯ Regarding magnitude, this only affects the feedback P300, and only in conjunction with difficulty. Finally, we found that task difficulty has the opposite effect on these components, both in their latencies and discriminability. Our results suggest that the FRN and the feedback-P300 in fact reflect different performance monitoring processes in a flexible way that depends on the behavioral context.