Neuroscience
-
Chronic discontinuous use of many psychomotor stimulants leads to behavioral sensitization and, owing to it shares common mechanisms with relapse, most researchers use its animal model to explore the neurobiological mechanisms of addiction. Recent studies have proved that N-methyl-d-aspartate receptors (NMDARs) are implicated in psychomotor stimulant-induced behavioral sensitization. However, the function of GluN2B-containing NMDARs and their potential downstream cascade(s) in the acquisition and expression of behavioral sensitization to methamphetamine (METH) have not been explored. ⋯ Moreover, chronic METH administration increased pERK1/2/ERK1/2 level in the NAc. In conclusion, GluN2B-containing NMDARs contribute to both the acquisition and expression of behavioral sensitization to METH in mice. Furthermore, the acquisition phase might be mediated by the Ras-ERK1/2-ΔFosB cascade in the CPu while the expression phase may be regulated by the Ras-ERK1/2 cascade in the CPu.
-
Alzheimer's disease (AD) is the most common type of clinical dementia. Previous studies have demonstrated that hydrogen sulfide (H2S) is implicated with the pathology of AD, and exogenous H2S attenuates spatial memory impairments in AD animal models. However, the molecular mechanism by which H2S improves cognition in AD has not been fully explored. ⋯ At the molecular level, we found that treatment with NaHS did not affect the expression of the GluN1 and GluN2A subunits of NMDA receptor (NMDAR), but did prevent the downregulation of GluN2B subunit and restored its synaptic abundance, response and downstream signaling in the hippocampus in transgenic mice. Moreover, applying Ro 25-6981, a specific GluN2B antagonist, abolished the beneficial effects of NaHS on cognitive performance and hippocampal LTP in transgenic mice. Collectively, our results indicate that H2S can reverse cognitive and synaptic plasticity deficits in AD model mice by restoring surface GluN2B expression and the function of GluN2B-containing NMDARs.
-
Although previous research has demonstrated that traumatic brain injury (TBI) accelerates the proliferation of neural stem cells in dentate gyrus of the hippocampus, most of these newborn cells undergo apoptosis in a traumatic microenvironment. Thus, promoting the long-term survival of newborn cells during neurogenesis is a compelling goal for the treatment of TBI. In this study, we investigated whether mild hypothermia (MHT) therapy, which mitigates the multiple secondary injury cascades of TBI, enhances the survival of newborn cells. ⋯ The TBI+MHT rats displayed a lower level of apoptosis in the dentate gyrus compared with the TBI rats. These data indicate that TBI could only facilitate a burst of proliferation and short-term survival of newborn cells, whereas TBI+MHT could facilitate long-term survival and maturation of newborn cells through diminishing pro-apoptotic microenvironment. These results suggest that MHT-mediated neurogenesis may have an important therapeutic potential for the endogenous repair of TBI.
-
Despite the fact that appropriate social behaviors are vital to thriving in one's environment, little is understood of the molecular mechanisms controlling social behaviors or how social experience sculpts these signaling pathways. Here, we determine if Phosphodiesterase 11A (PDE11A), an enzyme that is enriched in the ventral hippocampal formation (VHIPP) and that breaks down cAMP and cGMP, regulates social behaviors. PDE11 wild-type (WT), heterozygous (HT), and knockout (KO) mice were tested in various social approach assays and gene expression differences were measured by RNA sequencing. ⋯ Not only is PDE11A required for intact social interactions, we found that 1month of social isolation vs. group housing decreased PDE11A4 protein expression specifically within the membrane fraction of VHIPP. This isolation-induced decrease in PDE11A4 expression appears functional because social isolation impairs subsequent social approach behavior and social memory in a PDE11A genotype-dependent manner. Pathway analyses following RNA sequencing suggests PDE11A is a key regulator of the oxytocin pathway and membrane signaling, consistent with its pivotal role in regulating social behavior.
-
Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. ⋯ TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically.