Neuroscience
-
Internet-searching behaviors may change ways in which we find, store and consider information. In this study, we tested the effect of short-term Internet-search practicing on recollection processes. Fifty-nine human subjects with valid data (Experimental group, 43; Control group, 16) completed procedures involving a pre-test, 6days of practicing, and a post-test. ⋯ During imaging and as compared to pre-test data, subjects in the experimental group showed during post-test recall relatively decreased brain activations bilaterally in the middle frontal and temporal gyri. Such findings were not observed in the control group. The findings suggest that six days of practicing Internet searching may improve the efficiency of Internet searching without influencing the accuracy of recollection, with neuroimaging results implicating cortical regions involved in long-term memory and executive processing.
-
Limb somatosensory signals modify the discharge of vestibular neurons and elicit postural reflexes, which stabilize the body position. The aim of this study was to investigate the contribution of the γ-amino-butyric-acid (GABA) to the responsiveness of vestibular neurons to somatosensory inputs. The activity of 128 vestibular units was recorded in anesthetized rats in resting conditions and during sinusoidal foreleg rotation around the elbow or shoulder joints (0.026-0.625Hz, 45° peak amplitude). ⋯ These data suggest that the responses of vestibular neurons to somatosensory inputs are modulated by GABA through a tonic release, which modifies the membrane response to the synaptic current. It is also possible that a phasic release of GABA occurs during foreleg rotation, shaping the stimulus-elicited current passing through the membrane. If this is the case, the changes in the relative position of body segments would modify the GABA release inducing changes in the vestibular reflexes and in learning processes that modify their spatio-temporal development.
-
Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. ⋯ Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity.
-
The rhythmic activity of motoneurons (MNs) that underlies locomotion in mammals is generated by synaptic inputs from the locomotor network in the spinal cord. Thus, the quantitative estimation of excitatory and inhibitory synaptic conductances is essential to understand the mechanism by which the network generates the functional motor output. Conductance estimation is obtained from the voltage-current relationship measured by voltage-clamp- or current-clamp-recording with knowledge of the leak parameters of the recorded neuron. ⋯ Next, the conductance variations were estimated from mouse spinal MNs in vitro during drug-induced-locomotor-like activity. We found that the peak of excitatory conductance occurred during the depolarizing phase of the locomotor cycle, whereas the peak of inhibitory conductance occurred during the hyperpolarizing phase. These results suggest that the locomotor-like activity is generated by push-pull modulation via excitatory and inhibitory synaptic inputs.
-
Glutathione (GSH) deficiency has been identified as an early event in the progression of Parkinson's disease. However, the role of GSH in the etiology and pathogenesis of this neurodegenerative disorder is not well established. ⋯ In addition, high levels of tumor necrosis factor α (p<0.01), interleukins IL-1β p<0.01), IL-6 p<0.001) and nitric oxide p<0.01) were found in the treated animals compared to control groups, while no significant differences were found in IL-10 levels. These results suggest that transient GSH depletion can increase the susceptibility of SNpc to degeneration by promoting an inflammatory response and nitrosative stress, reinforcing the possible role of GSH unbalance, oxygen/nitrogen reactive species and neuroinflammation as causal factors on the degeneration of the SNpc.