Neuroscience
-
Anxiety disorders are more likely to occur in women than in men, usually emerge during adolescence and exhibit high comorbidity with alcohol use disorders (AUD). Adolescents with high levels of anxiety or heightened reactivity to stress may be at-risk for developing AUD. An approach to analyze if high levels of inborn anxiety predict greater ethanol drinking is to assess the latter variable in subjects classified as high- or low-anxiety responders. ⋯ Stress induced a significant increase in FOS immunoreactivity at the paraventricular nucleus, yet this effect was unaffected by level of anxiety response. Female adolescents with high levels of basal anxiety may be at-risk for exhibiting increased predisposition for ethanol intake and preference. The study also indicates that stress may exert differential effects on adolescent ethanol intake as a function of the level of anxiety response.
-
This experiment tested the hypothesis that interlimb transfer of motor performance depends on recruitment of motor control processes that are specialized to the hemisphere contralateral to the arm that is initially trained. Right-handed participants performed a single-joint task, in which reaches were targeted to 4 different distances. While the speed and accuracy was similar for both hands, the underlying control mechanisms used to vary movement speed with distance were systematically different between the arms: the amplitude of the initial acceleration profiles scaled greater with movement speed for the right-dominant arm, while the duration of the initial acceleration profile scaled greater with movement speed for the left-non-dominant arm. ⋯ We now hypothesize that task practice with the right arm might reinforce left-hemisphere mechanisms that vary acceleration amplitude with distance, while practice with the left arm might reinforce right-hemisphere mechanisms that vary acceleration duration with distance. We thus predict that following right arm practice, the left arm should show increased contributions of acceleration amplitude to peak velocities, and following left arm practice, the right arm should show increased contributions of acceleration duration to peak velocities. Our findings support these predictions, indicating that asymmetry in interlimb transfer of motor performance, at least in the task used here, depends on recruitment of lateralized motor control processes.
-
The recent development of organoid techniques, in which embryonic brain-like tissue can be grown from human or mouse stem cells in vitro offers the potential to transform the way in which brain development is studied. In this review, we summarize key aspects of the embryonic development of mammalian forebrains, focussing in particular on the cerebral cortex and highlight significant differences between mouse and primates, including human. We discuss recent work using cerebral organoids that has revealed key similarities and differences between their development and that of the brain in vivo. Finally, we outline the ways in which cerebral organoids can be used in combination with CRISPR/Cas9 genome editing to unravel genetic mechanisms that control embryonic development of the cerebral cortex, how this can help us understand the causes of neurodevelopmental disorders and some of the key challenges which will have to be resolved before organoids can become a mainstream tool to study brain development.
-
Dysfunction of N-Methyl-d-aspartate receptors (NMDARs) is believed to underlie some of the symptoms in schizophrenia, and non-competitive NMDAR antagonists (including phencyclidine (PCP)) are widely used as pharmacological schizophrenia models. Furthermore, mounting evidence suggests that impaired γ-aminobutyric acid (GABA) neurotransmission contributes to the cognitive deficits in schizophrenia. Thus alterations in GABAergic interneurons have been observed in schizophrenia patients and animal models. ⋯ A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions and that a substantial part of this activation is present in GABAergic interneurons in certain regions. This suggests that the psychotomimetic effect of PCP may be mediated via GABAergic interneurons.
-
Using an immunohistochemical technique, we mapped the immunoreactive structures containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) (Met-8) (a marker for the pro-enkephalin system) in the human diencephalon. Compared with previous studies, we observed a more widespread distribution of Met-8 in the human diencephalon. Met-8-immunoreactive cell bodies and fibers exhibited a more widespread distribution in the hypothalamus than in the thalamus. ⋯ A moderate density was observed in the paraventricular thalamic nucleus, reuniens thalamic nucleus, lateral and medial geniculate nuclei, dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus (posterior part) and ventromedial hypothalamic nucleus. The present study is the first to demonstrate the presence of clusters of Met-8-immunoreactive cell bodies in the human thalamus and hypothalamus, the distribution of fibers containing neuropeptides in the hypothalamus and the presence of these fibers in several thalamic nuclei. This neuroanatomical study will serve to elucidate the physiological roles of Met-8 in future studies of the human diencephalon.