Neuroscience
-
Using an immunohistochemical technique, we mapped the immunoreactive structures containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) (Met-8) (a marker for the pro-enkephalin system) in the human diencephalon. Compared with previous studies, we observed a more widespread distribution of Met-8 in the human diencephalon. Met-8-immunoreactive cell bodies and fibers exhibited a more widespread distribution in the hypothalamus than in the thalamus. ⋯ A moderate density was observed in the paraventricular thalamic nucleus, reuniens thalamic nucleus, lateral and medial geniculate nuclei, dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus (posterior part) and ventromedial hypothalamic nucleus. The present study is the first to demonstrate the presence of clusters of Met-8-immunoreactive cell bodies in the human thalamus and hypothalamus, the distribution of fibers containing neuropeptides in the hypothalamus and the presence of these fibers in several thalamic nuclei. This neuroanatomical study will serve to elucidate the physiological roles of Met-8 in future studies of the human diencephalon.
-
Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. ⋯ Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli.
-
Exogenous granulocyte-colony stimulating factor (G-CSF) has emerged as a drug candidate for improving the outcome after peripheral nerve injuries. We raised the question if exogenous G-CSF can improve nerve regeneration following a clinically relevant model - nerve transection and repair - in healthy and diabetic rats. In short-term experiments, distance of axonal regeneration and extent of injury-induced Schwann cell death was quantified by staining for neurofilaments and cleaved caspase 3, respectively, seven days after repair. ⋯ The weight ratio of ipsi-over contralateral gastrocnemius muscles, and perception of touch at any time point, were likewise not affected by G-CSF treatment. In addition, the inflammatory response in short- and long-term experiments was studied by analyzing ED1 stainable macrophages in healthy rats, but in neither case was any attenuation seen at the injury site or distal to it. G-CSF can prevent caspase 3 activation in Schwann cells in the short-term, but does not detectably affect the inflammatory response, nor improve early or late axonal outgrowth or functional recovery.
-
Protective postural responses, including stepping, to recover equilibrium are critical for fall prevention and are impaired in people with Parkinson's disease (PD) with freezing of gait (FoG). Improving protective postural responses through training may reduce falls in this population. However, motor learning, the basis of neurorehabilitation, is also impaired in people with PD and, in particular, people with PD who experience freezing. ⋯ Significant improvements were retained in both groups. In conclusion, people with PD who freeze exhibited reduced ability to improve protective postural responses in some, but not all, outcome variables. Additional training may be necessary to improve protective postural responses in people with PD who freeze.
-
Recent discussions on the ethics in animal experimentation instigate the refinement of methods used in Behavioral Neuroscience, particularly regarding fear/anxiety paradigms. We propose the Light Switch-Off Test (LSOT), based on the innate motivation to cease an aversive stimulus (bright light), displayed naturally by rodents in their habitat. Forty-six male adult Wistar rats were allocated into independent groups: control, diazepam at 1 or 2mg/kg, and meta-Chlorophenylpiperazine (mCPP) at 0.5 or 1mg/kg. ⋯ Animals exposed solely to the box for the length of the test did not respond in a false positive way. Therefore, the SOR represents a good index to measure the innate rodent fear of bright-lighten areas, once they react quickly in order to turn off the stimulus. Among its many advantages, the LSOT is a simple, replicable, non-invasive and minimally stressful procedure, since it does not expose animals to excessively aversive stimulus.