Neuroscience
-
Absence seizures arise from disturbances within the corticothalamocortical network, however the precise cellular and molecular mechanisms underlying seizure generation arising from different genetic backgrounds are not fully understood. While recent experimental evidence suggests that changes in inhibitory microcircuits in the cortex may contribute to generation of the hallmark spike-wave discharges, it is still unclear if altered cortical inhibition is a result of interneuron dysfunction due to compromised glutamatergic excitation and/or changes in cortical interneuron number. The stargazer mouse model of absence epilepsy presents with a genetic deficit in stargazin, which is predominantly expressed in cortical parvalbumin-positive (PV(+)) interneurons, and involved in the trafficking of glutamatergic AMPA receptors. ⋯ Further analysis using confocal fluorescence microscopy revealed that although there are no changes in cortical PV(+) interneuron number, there is a predominant loss of GluA1 and 4 containing AMPA receptors in PV(+) neurons in stargazers compared to non-epileptic controls. Taken together, these data suggest that the loss of AMPA receptors in PV(+) neurons could impair their feed-forward inhibitory output, ultimately altering cortical network oscillations, and contribute to seizure generation in stargazers. As such the feed-forward inhibitory interneurons could be potential targets for future therapeutic intervention for some absence epilepsy patients.
-
Spinal lamina I projection neurons serve as a major conduit by which noxious stimuli detected in the periphery are transmitted to nociceptive circuits in the brain, including the parabrachial nucleus (PB) and the periaqueductal gray (PAG). While neonatal spino-PB neurons are more than twice as likely to exhibit spontaneous activity compared to spino-PAG neurons, the underlying mechanisms remain unclear since nothing is known about the voltage-independent (i.e. 'leak') ion channels expressed by these distinct populations during early life. To begin identifying these key leak conductances, the present study investigated the role of classical inward-rectifying K(+) (Kir2) channels in the regulation of intrinsic excitability in neonatal rat spino-PB and spino-PAG neurons. ⋯ In addition, voltage-clamp experiments showed that spino-PB and spino-PAG neurons express similar amounts of Kir2 current during the early postnatal period, suggesting that the differences in the prevalence of spontaneous activity between the two populations are not explained by differential expression of Kir2 channels. Overall, the results indicate that Kir2-mediated conductance tonically dampens the firing of multiple subpopulations of lamina I projection neurons during early life. Therefore, Kir2 channels are positioned to tightly shape the output of the immature spinal nociceptive circuit and thus regulate the ascending flow of nociceptive information to the developing brain, which has important functional implications for pediatric pain.
-
To save energy, the European directives from the Eco-design of Energy Using Products (2005/32/CE) have recommended the replacement of incandescent lamps by more economic devices such as Light Emitting Diodes (LEDs). However, the emission spectrum of these devices is enriched in blue radiations, known to be potentially dangerous to the retina. Recent studies showed that light exposure contributes to the onset of early stages of age-related macular degeneration (AMD). ⋯ Twenty-four hours exposure at high luminance was compared to a cyclic (dark/light) exposure at domestic levels for 1week and 1month, using different LEDs (Cold-white, blue and green), as well as fluorocompact bulbs and fluorescent tubes. The data suggest that the blue component of the white-LED may cause retinal toxicity at occupational domestic illuminance and not only in extreme experimental conditions, as previously reported. It is important to note that the current regulations and standards have been established on the basis of acute light exposure and do not take into account the effects of repeated exposure.
-
Reactive astrocytosis and the subsequent glial scar is ubiquitous to injuries of the central nervous system, especially spinal cord injury (SCI) and primarily serves to protect against further damage, but is also a prominent inhibitor of regeneration. Manipulating the glial scar by targeting chondroitin sulfate proteoglycans (CSPGs) has been the focus of much study as a means to improve axon regeneration and subsequently functional recovery. ⋯ Furthermore, conditioned medium taken from treated Neu7s, or co-culture experiments with dorsal root ganglia (DRG) showed that siRNA treatment resulted in a more permissive environment for DRG neurite outgrowth than treatment with chondroitinase ABC alone. These results indicate that there is a role for targeted siRNA therapy using polymeric vectors to facilitate regeneration of injured axons following central nervous system injury.
-
A subpopulation of olivary pretectal nucleus (OPN) neurons fire action potentials in a rhythmic manner with an eruption of activity occurring approximately every two minutes. These infra-slow oscillations depend critically on functional retinal input and are subject to modulation by light. Interestingly, the activity of photoreceptors is necessary for the emergence of the rhythm and while classic photoreceptors (rods and cones) are necessary in darkness and dim light, melanopsin photoreceptors are indispensable in bright light. ⋯ Moreover, the most effective CBX concentration depressed cone-mediated light-induced responses of oscillatory neurons suggesting that CBX is also acting on targets other than GJs. In contrast, intravitreal injection of meclofenamic acid (MFA, 20mM) led to disruption of the rhythm but did not interfere with cone-mediated light-induced responses of oscillatory neurons, implying that MFA is more specific toward GJs than CBX, as suggested before. We conclude that electrical coupling between various types of retinal cells and resultant synchronous firing of retinal ganglion cells is necessary for the generation of infra-slow oscillations in the rat OPN.