Neuroscience
-
Women are more likely than men to suffer from anxiety disorders and major depression. These disorders share hyperresponsiveness to stress as an etiological factor. Thus, sex differences in brain arousal systems and their regulation by chronic stress may account for the increased vulnerability to these disorders in women. ⋯ The ovarian steroids could "buffer" the effect of this adverse experience in females on these parameters. Finally, the dexamethasone (DEX) suppression test indicated that the chronic stress associated with social isolation impairs feedback inhibition in both sexes in which an increase in the abundance of glucocorticoid receptors (GRs) in the hippocampus was found. Altogether, these results demonstrate that social isolation affects neuroendocrine reactivity to stress, plasticity and emotionality in a sexually dimorphic manner.
-
cAMP response-element binding protein (CREB)-dependent genes are differentially expressed in brains of temporal lobe epilepsy (TLE) patients and also in animal models of TLE. Previous studies have demonstrated the importance of CREB regulated transcription in TLE. However, the role of the key regulator of CREB activity, CREB-regulated transcription coactivator 1 (CRTC1), has not been explored in epilepsy. ⋯ At 48 h after SE, FK506 treatment blocked CRTC1 nuclear localization and dephosphorylation of Ser151. Our results provide evidence that CREB cofactor CRTC1 translocates into the nucleus of a distinct subset of hippocampal neurons during and following SE and this translocalization is regulated by calcineurin at a later time point following SE. Nuclear CRTC1 can bind to CREB possibly altering transcription during epileptogenesis.
-
It is well established that multisensory integration is a functional characteristic of the superior colliculus that disambiguates external stimuli and therefore reduces the reaction times toward simple audiovisual targets in space. However, in a condition where a complex audiovisual stimulus is used, such as the optical flow in the presence of modulated audio signals, little is known about the processing of the multisensory integration in the superior colliculus. Furthermore, since visual and auditory deficits constitute hallmark signs during aging, we sought to gain some insight on whether audiovisual processes in the superior colliculus are altered with age. ⋯ Hence, superior colliculus audiovisual interactions were more numerous in adult rats (38%) than in aged rats (8%). These results suggest that intersensory interactions in the superior colliculus play an essential role in space processing toward audiovisual moving objects during self-motion. Moreover, aging has a deleterious effect on complex audiovisual interactions.
-
In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. ⋯ The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games.
-
κ opioid receptor agonists produce aversive effects in rodents, however the underlying mechanisms remain unclear. Activation of p38 mitogen-activated protein kinase (MAPK) has been discovered to play a critical role in the modulation of affective behaviors. ⋯ Stereotaxic microinjection of the p38 MAPK inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridy-l)-1H-imidazole (SB203580) into amygdala significantly inhibited p38 MAPK activation and completely blocked the conditioned place aversion in mice. Thus, these results suggested that activation of p38 MAPK in the amygdala was required to mediate κ opioid receptor-induced aversive behavior.