Neuroscience
-
Depression is one of the most prevalent and life-threatening forms of mental illness. The heavy social burden imposed by this disorder calls for a better understanding of its pathogenesis. Light deficiency is an important factor potentially leading to depression. ⋯ These synaptological results indicate that the absolute synaptic strength of single L5PC connections was enhanced and the transmitter release probability was increased although the connections between L5PCs became sparse. Therefore, a compensation mechanism accompanied the negative changes that were consistent with the depressive behavioral phenotype. Our findings from the motor cortex of depression-like behavior mice may underlie the neural microcircuit mechanism of depression, providing insights into the pathogenesis of depression at a level of single neurons and synaptic connections.
-
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). ⋯ As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
-
Interaction between DRD2 variation and sound environment on mood and emotion-related brain activity.
Sounds, like music and noise, are capable of reliably affecting individuals' mood and emotions. However, these effects are highly variable across individuals. A putative source of variability is genetic background. ⋯ Results showed mood improvement after music exposure in DRD2GG subjects and mood deterioration after noise exposure in GT subjects. Moreover, the music, as opposed to noise environment, decreased the striatal activity of GT subjects as well as the prefrontal activity of GG subjects while processing emotional faces. These findings suggest that genetic variability of dopamine receptors affects sound environment modulations of mood and emotion processing.
-
Review
Neural plasticity during motor learning with motor imagery practice: Review and perspectives.
In the last decade, many studies confirmed the benefits of mental practice with motor imagery. In this review we first aimed to compile data issued from fundamental and clinical investigations and to provide the key-components for the optimization of motor imagery strategy. We focused on transcranial magnetic stimulation studies, supported by brain imaging research, that sustain the current hypothesis of a functional link between cortical reorganization and behavioral improvement. As perspectives, we suggest a model of neural adaptation following mental practice, in which synapse conductivity and inhibitory mechanisms at the spinal level may also play an important role.
-
Stimulus exposure duration in emotion perception research is often chosen pragmatically; however, little work exists on the consequences of stimulus duration for the processing of emotional faces. We utilized the spatiotemporal resolution capabilities of magnetoencephalography (MEG) to characterize early implicit processing of emotional and neutral faces in response to stimuli presented for 80 and 150ms. ⋯ No effects on reaction time or accuracy were observed. Our findings caution that differences in stimulus duration may result in differential neural processing of emotional faces and challenge the idea that neutral faces constitute a neutral baseline.