Neuroscience
-
Patients with Parkinson's disease (PD), and especially those with freezing of gait (FOG), are known to experience impairments in gait rhythmicity, symmetry, and bilateral coordination between both legs. In the current study, we investigated whether deficits in perception of gait speed between limbs were more pronounced in freezers than in non-freezers and could explain some of these gait impairments. We also assessed cognitive ability and proprioception. ⋯ Greater step length and limb excursions were associated with better perception, whereas more variable gait was associated with more impaired perception. The results confirm the hypothesis that freezers have impaired perception of locomotor asymmetry. While proprioceptive and cognitive ability did not explain these findings, the possible causal link with the occurrence of FOG needs further corroboration.
-
Stress during early development produces lasting effects on psychopathological outcomes. We analysed the impact of prior intermittent, physical stress (IPS) during early adolescence (PD 22-33) on anxiety-like behaviour of female rats in adulthood. After behavioural testing, we used immunohistochemistry for the 5-HT transporter (SERT) to evaluate 5-HT innervation profiles in the medial prefrontal cortex (mPFC) and ventral hippocampus (VH). ⋯ Selective stress-induced increases in the density of SERT-ir positive fibres were found in the infralimbic (IL) subregion of the mPFC but not in the cingulate or prelimbic (PL) subregions. IPS in early adolescence did not affect 5-HT innervation profiles in any sub-fields of the VH. Our findings confirm and extend on earlier evidence that stress during early adolescence promotes the emergence of an anxious phenotype and provide novel evidence that these effects are associated with increased 5-HT innervation of the IL mPFC.
-
The medial preoptic area (mPOA) participates in the temperature and cardiovascular control. The mPOA receives inputs from limbic structures and sends projections to hypothalamus and brainstem. Moreover, stress elicits pronounced neuronal activation in mPOA, suggesting its involvement in central neural pathway mediating stress responses. ⋯ In addition, pretreatment of mPOA with CoCl2 increased RS-evoked tachycardic and hyperthermic responses evoked by RS when compared with aCSF-treated animals, without affecting the RS-evoked pressor response and the fall in Ttail. In summary, our results suggest that mPOA exerts a tonic inhibitory influence on the sympathetic cardiac tone under both rest and stress conditions, modulating negatively the sympathetic component of baroreflex. Results also confirm the mPOA involvement in the control of body temperature because its inhibition was followed by a sustained increase in body temperature and vasoconstriction in the tail artery territory.
-
Neurons coding spatial location (grid cells) are found in medial entorhinal cortex (MEC) and demonstrate increasing size of firing fields and spacing between fields (grid scale) along the dorsoventral axis. This change in grid scale correlates with differences in theta frequency, a 6-10Hz rhythm in the local field potential (LFP) and rhythmic firing of cells. A relationship between theta frequency and grid scale can be found when examining grid cells recorded in different locations along the dorsoventral axis of MEC. ⋯ All known anxiolytic drugs decrease hippocampal theta frequency despite their differing mechanisms of action. Specifically, anxiolytics decrease the intercept of the theta frequency-running speed relationship in the hippocampus. Here we demonstrate that anxiolytics decrease the intercept of the theta frequency-running speed relationship in the MEC, similar to hippocampus, and the decrease in frequency through this change in intercept does not affect grid scale.
-
In this study, we examined the relationship between tractography-based measures of white matter integrity (ex. fractional anisotropy [FA]) from diffusion tensor imaging (DTI) and five reading-related tasks, including rapid automatized naming (RAN) of letters, digits, and objects, and reading of real words and nonwords. Twenty university students with no reported history of reading difficulties were tested on all five tasks and their performance was correlated with diffusion measures extracted through DTI tractography. A secondary analysis using whole-brain Tract-Based Spatial Statistics (TBSS) was also used to find clusters showing significant negative correlations between reaction time and FA. ⋯ These findings provide evidence for the role of the inferior fronto-occipital fasciculus in tasks that are highly demanding of orthography-phonology translation (e.g., nonword reading) and semantic processing (e.g., RAN object). This demonstrates the importance of the inferior fronto-occipital fasciculus in basic naming and suggests that this tract may be a sensitive predictor of rapid naming performance within the typical population. We discuss the findings in the context of current models of reading and speech production to further characterize the white matter pathways associated with basic reading processes.