Neuroscience
-
Neurogenesis in the subventricular zone (SVZ) plays a vital role in neurologic recovery after stroke. However, only a small fraction of newly generated neuroblasts from the SVZ will survive long-term. Successful migration and survival of neuroblasts requires angiogenesis, lesion-derived chemo-attractants, and appropriate local microenvironments, which are partly regulated by the platelet-derived growth factor receptor (PDGFR) signaling pathway. ⋯ Crenolanib treatment increased the apoptosis of pericytes and decreased the pericyte/vascular coverage, but had no effects on apoptosis of astrocytes. We conclude that the PDGFR signaling pathway plays a vital role in the SVZ neurogenesis after stroke. It can also affect angiogenesis, lesion-derived chemo-attractants, and the local microenvironment, which are all important to stroke-induced neurogenesis.
-
Neurons coding spatial location (grid cells) are found in medial entorhinal cortex (MEC) and demonstrate increasing size of firing fields and spacing between fields (grid scale) along the dorsoventral axis. This change in grid scale correlates with differences in theta frequency, a 6-10Hz rhythm in the local field potential (LFP) and rhythmic firing of cells. A relationship between theta frequency and grid scale can be found when examining grid cells recorded in different locations along the dorsoventral axis of MEC. ⋯ All known anxiolytic drugs decrease hippocampal theta frequency despite their differing mechanisms of action. Specifically, anxiolytics decrease the intercept of the theta frequency-running speed relationship in the hippocampus. Here we demonstrate that anxiolytics decrease the intercept of the theta frequency-running speed relationship in the MEC, similar to hippocampus, and the decrease in frequency through this change in intercept does not affect grid scale.
-
Spontaneous neural repair from endogenous neural stem cells' (NSCs) niches occurs in response to central nervous system (CNS) injuries to only a limited extent. Uncovering the mechanisms that control neural repair and can be further manipulated to promote NSCs toward oligodendrocyte progenitors cells (OPCs) and myelinating oligodendrocytes is a major objective. In the current study, we describe high-throughput transcriptional changes in adult mouse subventricular zone (SVZ)-NSCs during differentiation in vitro. ⋯ Accordingly, overexpression of Prickle1 increases the differentiation of NSCs to CNPase+ pre-myelinating and myelinating MBP+ OLs. In particular, the necessity of Prickle1 for oligodendrocyte differentiation is demonstrated in purified OPCs cultures. Our findings demonstrate the role of Prickle1 in positive regulation of differentiation and maturation of oligodendrocytes suggesting that targeting Prickle1 in CNS injuries and particularly in demyelinating disease could promote generation of myelinating oligodendrocytes from endogenous niches to replenish damaged oligodendrocytes.
-
Morphometry studies of human brain development have revealed characteristics of some growth patterns, such as gray matter (GM) and white matter (WM), but the features that make human neurodevelopment distinct from that in other species remain unclear. Studies of the common marmoset (Callithrix jacchus), a small New World primate, can provide insights into unique features such as cooperative behaviors complementary to those from comparative analyses using mouse and rhesus monkey. In the present study, we analyzed developmental patterns of GM, WM, and cortical regions with volume measurements using longitudinal sample (23 marmosets; 11 male, 12 female) between the ages of one and 30months. ⋯ The progressive-regressive pattern detected in both global and cortical GM was well correlated to phases of synaptogenesis and synaptic pruning reported in previous marmoset studies. A rapid increase in WM in early development may represent a distinctive aspect of human neurodevelopment. These findings suggest that studies of marmoset brain development can provide valuable comparative information that will facilitate a deeper understanding of human brain growth and neurodevelopmental disorders.
-
There have been extensive studies of intrinsic connectivity networks (ICNs) in the human brains using resting-state functional magnetic resonance imaging (fMRI) in the literature. However, the functional organization of ICNs in macaque brains has been less explored so far, despite growing interests in the field. ⋯ These 70 ICNs are interpreted based on two publicly available parcellation maps of macaque brains and our work significantly expand currently known macaque ICNs already reported in the literature. In general, this set of connectome-scale group-wise consistent ICNs can potentially benefit a variety of studies in the neuroscience and brain-mapping fields, and they provide a foundation to better understand brain evolution in the future.