Neuroscience
-
Ectopic transgene expression in the retina has been reported in various transgenic mice, indicating the importance of characterizing retinal phenotypes. We examined transgene expression in the VGAT-ChR2-EYFP mouse retina by fluorescent immunohistochemistry and electrophysiology, with special emphasis on enhanced yellow fluorescent protein (EYFP) localization in retinal neuronal subtypes identified by specific markers. Strong EYFP signals were detected in both the inner and outer plexiform layers. ⋯ In contrast, no EYFP signal was detected in the somata of retinal excitatory neurons: photoreceptors, bipolar and ganglion cells, as well as Müller glial cells. When glutamatergic transmission was blocked, bright blue light stimulation elicited inward photocurrents from amacrine cells, as well as post-synaptic inhibitory currents from ganglion cells, suggesting a functional ChR2 expression. The VGAT-ChR2-EYFP mouse therefore could be a useful animal model for dissecting retinal microcircuits when targeted labeling and/or optogenetic manipulation of retinal inhibitory neurons are required.
-
Neuroprotection is an unmet need in eye disorders characterized by retinal ganglion cell (RGC) death, such as prematurity-induced retinal degeneration, glaucoma, and age-related macular degeneration. In all these disorders excitotoxicity is a prominent component of neuronal damage, but clinical data discourage the development of NMDA receptor antagonists as neuroprotectants. Here, we show that activation of mGlu1 metabotropic glutamate receptors largely contributes to excitotoxic degeneration of RGCs. ⋯ We also injected MSG to crv4 mice, which lack mGlu1 receptors because of a recessive mutation of the gene encoding the mGlu1 receptor. MSG did not cause retinal degeneration in crv4 mice, whereas it retained its toxic activity in their wild-type littermates. These findings demonstrate that mGlu1 receptors play a key role in excitotoxic degeneration of RGCs, and encourage the study of mGlu1 receptor NAMs in models of retinal neurodegeneration.
-
Around a quarter of neurons in laminae I-II of the dorsal horn are inhibitory interneurons. These play an important role in modulating somatosensory information, including that perceived as pain or itch. Previous studies in rat identified four largely non-overlapping neurochemical populations among these cells, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin. ⋯ Since ∼25% of inhibitory interneurons in this region belong to a novel calretinin-expressing type, our results suggest that virtually all inhibitory interneurons in superficial dorsal horn can be assigned to one of these five neurochemical populations. Although our main focus was inhibitory neurons, we also identified a population of excitatory dynorphin-expressing cells in laminae I-II that are largely restricted to the medial part of the mid-lumbar dorsal horn, corresponding to glabrous skin territory. These findings are important for interpretation of studies using molecular-genetic techniques to manipulate the functions of interneuron populations to investigate their roles in somatosensory processing.
-
Prolonged use/abuse of opioid agonists leads to development of severe dependence to these drugs. Orexin-A has a crucial role in development of morphine dependence. The locus coeruleus (LC) is implicated in the expression of morphine withdrawal signs. ⋯ Chronic morphine injection induced morphine dependence in LC neurons which was revealed as a significant increase in LC neuronal firing rate in response to naloxone. The results of this study indicated that SB-334867 administration prior to each morphine injection prevents naloxone-elicited neuronal activation within the LC. In addition, naloxone injection enhanced the cAMP concentration in LC neurons of morphine-dependent animals and this effect was significantly reduced by OX1R blockade.
-
Meta Analysis
Meta-Analysis of Stem Cell Transplantation for Reflex Hypersensitivity After Spinal Cord Injury.
Stem cells have been used in novel therapeutic strategies for spinal cord injury (SCI), but the effect of stem cell transplantation on neuropathic pain after SCI is unclear. The current meta-analysis evaluates the effects of stem cell transplantation on neuropathic pain after SCI. We first conducted online searches of PubMed, Web of Science, China Academic Journals Full-text Database, and Wanfang Data for randomized controlled trials that compared stem cell transplantation and vehicle treatments in rodent models of neuropathic pain after SCI. ⋯ In addition, mesenchymal stem cell transplantation was an effective treatment for mechanical, but not thermal reflex hypersensitivity relief in rats. Transplantation showed a positive effect when carried out at 3 or 7days post-SCI. Stem cell transplantation alleviates mechanical reflex hypersensitivity in rats and mice and thermal reflex hypersensitivity in mice after SCI.