Neuroscience
-
Retraction Of Publication
WITHDRAWN: Auditory Surprise Model Based on Pattern Retrieval from the Past Observation.
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the authors. The authors regrets that the reason for withdrawal is due to an disagreement in authorship and in scope of data disclosure. The authors apologize to the readers for this unfortunate error.
-
Hypertension is a major risk factor for stroke, which is one of the leading global causes of death. In the search for new and effective therapeutic targets in stroke research, we need to understand the influence of hypertension in the vasculature following stroke. We used Affymetrix whole-transcriptome expression profiling as a tool to address gene expression differences between the occluded and non-occluded middle cerebral arteries (MCAs) from spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats after transient middle cerebral artery occlusion (tMCAO), to provide clues about the pathological mechanisms set in play after stroke. ⋯ Thus these data suggest that Ccl2, Edn1, Tgfβ2, Olr1 and Serpine1 may be possible mediators of the vascular changes in the occluded MCAs from both SHRs and WKY rats after tMCAO. The aforementioned genes possess biological functions that are consistent with early stroke injuries. In conclusion, these genes may be potential targets in future strategies for acute stroke treatments that can be used in patients with and without hypertension.
-
Traumatic brain injury (TBI) is a public health problem that causes high mortality and disability worldwide. Secondary brain damage from this type of injury may cause brain edema, blood-brain barrier destruction, and neurological dysfunction. MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level and play vital roles in maintaining and regulating physiological function. ⋯ Some special miRNAs in blood were used in clinical trials for TBI diagnosis and prognosis prediction. Treatment with miRNA agomirs or antagomirs alleviated the lesion volume and improved neurological deficits post-injury. We review the current progress of miRNA studies in TBI patients and animal models and identify the prospects and difficulties involved in the clinical applications of miRNAs.
-
Extensive studies have indicated brain function connectivity abnormalities in autism spectrum disorder (ASD). However, there is a lack of longitudinal or cross-sectional research focused on tracking age-related developmental trends of autistic children at an early stage of brain development or based on a relatively large sample. The present study examined brain network changes in a total of 186 children both with and without ASD from 3 to 11 years, an early and key development period when significant changes are expected. ⋯ The main findings of the study were as follows: (1) From the connectivity analysis, several inter-regional synchronizations with reduction were identified in the younger and older ASD groups, and several intra-regional synchronization increases were observed in the older ASD group. (2) From the graph analysis, a reduced clustering coefficient and enhanced mean shortest path length in specific frequencies was observed in children with ASD. (3) Results suggested an age-related decrease of the mean shortest path length in the delta and theta bands in TD children, whereas atypical age-related alteration was observed in the ASD group. In addition, graph measures were correlated with ASD symptom severity in the alpha band. These results demonstrate that abnormal neural communication is already present at the early stages of brain development in autistic children and this may be involved in the behavioral deficits associated with ASD.
-
Cluster of differentiation 36 (CD36) belongs to the class B scavenger receptor family. CD36 is a glycoprotein found on the surface of various cell types and has been implicated in the mechanism of numerous central nervous system (CNS) diseases. However, the relationship between CD36 and epilepsy remains unknown. ⋯ Whole-cell patch-clamp technique exhibited a decreased frequency of action potentials (APs) in the hippocampal slices of CD36-/- mice. In addition, local field potential (LFP) analysis further indicated that CD36 deletion reduced the frequency and duration of epileptiform-like discharges. These results revealed that CD36 deficiency could produce an antiepileptic effect and could provide new insight into antiepileptic treatment.