Neuroscience
-
The aim of this study is to investigate the effect of ketogenic metabolism, induced by different diet interventions, on histone acetylation and its potential antioxidant capacity to injured spinal cord tissue in rats. 72 male Sprague-Dawley rats were randomly divided into 4 groups, fed with ketogenic diet (KD), every other day fasting (EODF), every other day ketogenic diet (EODKD) and standard diet (SD) respectively for 2 weeks. β-Hydroxybutyrate (βOHB) concentration was measured both in serum and cerebrospinal fluid (CSF). C5 spinal cord tissue was harvested before, at 3 h and 24 h after injury for analysis of HDAC activity, histone acetylation and oxidative makers. All three dietary interventions resulted in a significant increase of βOHB level in both serum and CSF, and inhibited HDAC activity by 31-43% in spinal cord. ⋯ Anti-oxidative stress genes Foxo3a and Mt2 and related proteins, such as mitochondrial superoxide dismutase (SOD), FOXO3a, catalase were increased in dietary intervention groups. After SCI, high ketogenic metabolism demonstrated significant reduction of the expression of lipid peroxidation factors malondialdehyde (MDA), and this might contribute to the reported neuroprotection of the spinal cord from oxidative damage possibly mediated by increasing SOD. The result of this study suggested that by inhibiting HDAC activity and modifying related gene transcription, ketogenic metabolism, induced by KD, EODF or EODKD, might reduce oxidative damage in the spinal cord tissue after acute injury.
-
Neuroglobin (Ngb) is a member of the globin family of respiratory proteins, which was recently observed in many neurons of the auditory pathways. Up to now, however, nothing was known about the role of Ngb in hearing processes. We therefore studied auditory function by recording distortion-product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABRs) in wild-type (C57BL/6N) and Ngb-knockout mice. ⋯ While ABR amplitudes were similar in both groups before noise overexposure, four weeks after trauma a moderate but statistically significant decrease of the latest peak-to-peak response amplitude (originating in the inferior colliculus) was observed in KO mice. Our results suggest that the lack of Ngb, at least in the model used in the present study, results in only marginal deficits in hearing ability. A putative functional role of Ngb in the efferent system warrants further studies.
-
The Ventral Tegmental Area (VTA) contains a considerable population of rhythmically firing dopaminergic neurons, which are influenced by auto-inhibition due to extra-synaptic dopamine release resulting in volume transmission. Using a Multi-Electrode-Array we simultaneously recorded in vitro from multiple VTA dopamine neurons in the rat and studied their mutual interactions. We observed that the dopamine sensitivity (EC50) of the neurons (i.e. the relation between dopamine concentration and firing rate) was quite variable within the recorded population. ⋯ Highly sensitive neurons became followers (of the population rhythm), whereas less sensitive dopamine neurons played a more leading role. This was confirmed by the application of sulpiride which reduces the dopamine sensitivity of all neurons through competition and abolishes the structure in the interactions. These findings imply that therapeutics, which have an easy to understand effect on firing rate, could have a more complicated effect on the functional organization of the local VTA population, through volume transmission principles.
-
Sirtuin 6 (SIRT6), a member of the sirtuin family of NAD(+)-dependent deacetylases, has been shown to produce beneficial effects in myocardial ischemia/reperfusion (I/R). However, the role of SIRT6 in cerebral I/R is largely unclear. In this study, we investigated the effects of SIRT6 overexpression in regulating I/R injury in a mouse cerebral I/R model in vivo and in oxygen-glucose-deprivation/reoxygenation (OGD/R)-stimulated neuro-2a neuroblastoma cells in vitro. ⋯ Moreover, in OGD/R-stimulated neuro-2A cells, SIRT6 overexpression produced similar protective effects to those induced by the antioxidant NAC, but no added benefits were detected when SIRT6 overexpression was used in combination with NAC (P > 0.05). These findings provide evidence that SIRT6 can protect the brain from cerebral I/R injury by suppressing oxidative stress via NRF2 activation. Thus, SIRT6 may serve as a potential therapeutic target for ischemic stroke.
-
The regions of the olfactory epithelium affected by hydrogen sulfide (H2S) toxicity in the rat present a striking similarity with the developmental olfactory zone 1 described in the mouse. This zone which is the only region containing neurons expressing NAD(P)H quinone dehydrogenase 1 (NQO1) is involved in complex behavioral responses in rodents, and other mammals, triggered by specific olfactory stimuli. We therefore sought to determine whether (1) olfactory neurons expressing NQO1 are located in the same regions in the rats and in the mice and (2) there is an overlap between olfactory neurons expressing this protein and those affected by the toxicity of H2S. ⋯ The degree of agreement or overlap between these two populations of neurons (necrosis vs. NQO1 expression) reached 80.2%. Although the underlying mechanisms accounted for the high sensitivity for NQO1 neurons -or the relative protection of non NQO1 neurons- to sulfide toxicity remain to be established, this observation is offering an intriguing approach that could be used to acutely suppress the pool of neural cells in olfactory zone I and to understand the mechanisms of toxicity and protection of other populations of neurons exposed to sulfide.