Neuroscience
-
Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. ⋯ Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation.
-
Interleukin-1β (IL-1β) and prostaglandin (PG) D2 are endogenous sleep-promoting substances. Since it was reported that a highly selective cyclooxygenase-2 (COX-2) inhibitor, NS398, completely inhibited IL-1β-induced sleep in rats, IL-1β-induced sleep had been believed to be mediated by prostanoids, most probably PGD2. ⋯ Meanwhile, IL-1β at doses of 1.7 and 5μg/kg also significantly increased NREM sleep for 6h after intraperitoneal injection at 20:00 (light-off time) by 76.8% and 121.1%, respectively, in wild-type (WT) mice, by 67.7% and 147.3%, respectively, in WT mice pretreated with NS398 (5mg/kg) and by 108.9% and 121.6%, respectively, in PGD2 receptor (DP1R) knockout mice. These results indicate that IL-1β-induced NREM sleep is independent of the PGD2/DP1R system and other COX-2-derived prostaglandins in rats and mice.
-
The M-current (IM) is a voltage-dependent, persistent K+ current so termed because it is strongly inhibited by the cholinergic agonist muscarine. The IM main function is to limit neuronal excitability by contrasting action potential firing. Although motoneurons are sensitive to acetylcholine, the role of IM in modulating their excitability is still controversial. ⋯ Current-clamp experiments demonstrated that IM strongly regulated HM action potential firing, since both muscarine and linopirdine increased spike frequency whereas the M-channel opener retigabine (20μM) reduced it. Conversely, IM seemed uninvolved in the generation of the medium afterhyperpolarizing potential. Our results suggest that HMs possess IM, whose pharmacological modulation is an important tool to up- or down-regulate excitability, to be explored in experimental models of neurodegeneration.
-
The present work was designed to study the mechanisms associated with Nurr1 modulation following early life permethrin (PERM) treatment during rat's life span. Here we demonstrate that PERM exposure in rats, at a dose close to No Observed Adverse Effect Level (NOAEL) for 15days during neonatal brain development leads to its accumulation long after exposure. In striatum from adolescent rats we detected an increase in DNA methyltransferases (DNMTs) such as DNMT1, DNMT3a, Tyrosine hydroxylase, monomeric and aggregated α-synuclein protein levels. ⋯ In silico studies showed clear evidence of a strong binding interaction between PERM and its metabolite 3-phenoxybenzoic acid with the nuclear orphan receptor Nurr1. These findings suggest that an additional interference with the dopaminergic neuron pathway could occur in situ during PERM accumulation in brain. Therefore, Nurr1 modulation in early life PERM-treated rats, depends on age-related adaptive responses in animals.
-
The p75 neurotrophin receptor (p75NTR) and its activation of the sphingomyelin signaling cascade are essential for mechanical hypersensitivity resulting from locally injected nerve growth factor (NGF). Here the roles of the same effectors, and of the tropomyosin receptor kinase A (TrkA) receptor, are evaluated for thermal hyperalgesia from NGF. Sensitivity of rat hind paw plantar skin to thermal stimulation after local sub-cutaneous injection of NGF (500ng) was measured by the latency for paw withdrawal (PWL) from a radiant heat source. ⋯ Injection of an anti-TrkA antibody known to promote dimerization and activation of that receptor, independent of NGF, also caused thermal hyperalgesia, and prevented the further reduction of PWL from subsequently injected NGF. A non-specific inhibitor of tropomyosin receptor kinases, K252a, prevented thermal hyperalgesia from NGF, but not that from the anti-TrkA antibody. These findings suggest that the TrkA receptor has a predominant role in thermal hypersensitivity induced by NGF, while p75NTR and its pathway intermediates serve a modulatory role.