Neuroscience
-
Lipopolysaccharide (LPS) might affect the central nervous system by causing neuroinflammation, which subsequently leads to brain damage and dysfunction. In this study, we evaluated the role of nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation in long-term behavioral alterations of 8-week-old male C57BL/6 mice injected intraperitoneally with LPS (5mg/kg). At different time points after injection, we assessed locomotor function with a 24-point neurologic deficit scoring system and the rotarod test; assessed recognition memory with the novel object recognition test; and assessed emotional abnormality (anhedonia and behavioral despair) with the tail suspension test, forced swim test, and sucrose preference test. ⋯ We found that LPS-injected mice displayed long-term depression-like behaviors and recognition memory deficit; elevated expression of NLRP3, ASC, and caspase-1 p10; increased levels of IL-1β, IL-18, and TNFα; decreased levels of IL-10; and increased microglial activation. These effects were blocked by the NLRP3 inflammasome inhibitor Ac-Tyr-Val-Ala-Asp-chloromethylketone. The results demonstrate proof of concept that NLRP3 inflammasome activation contributes to long-term behavioral alterations in LPS-exposed mice, probably through enhanced inflammation, and that NLRP3 inflammasome inhibition might alleviate peripheral and brain inflammation and thereby ameliorate long-term behavioral alterations in LPS-exposed mice.
-
While deficits in imitation had been reported in children with autism spectrum disorder (ASD), its exact nature remains unclear. A dysfunction in mirroring mechanisms (through action imitation) has been proposed by some studies to explain this, although some recent evidence points against this hypothesis. The current study used behavior and functional MRI to examine the integrated functioning of the regions that are considered part of the Action Imitation network (AIN) in children and adolescents with ASD during a motor imitation task. ⋯ Intact performance on imitation (accurate imitation of hand gestures outside the scanner) in both ASD and TD groups was accompanied by significantly lower activity in ASD participants, relative to TD, in right angular gyrus, precentral gyrus, and left middle cingulate. In addition, autism traits were found to be significantly correlated with activation in the right angular gyrus. Overall, the findings of this study support the role of AIN in imitation and a potential difference in the recruitment of this network in ASD children.
-
In the spinal cord, glycine and γ-amino butyric acid (GABA) are inhibitory neurotransmitters. However, the ontogeny of the glycinergic network remains unclear. To address this point, we examined the developmental formation of glycinergic terminals by immunohistochemistry for glycine transporter 2 (GlyT2), a marker of glycinergic terminals, in developing mouse cervical spinal cord. ⋯ VGAT-positive dots (inhibitory terminals) continued to increase until P21. These results suggest that GABAergic terminals first appear during embryonic development and may often change to colocalizing terminals throughout the gray matter during development. The colocalizing terminals may remain in the dorsal horn, whereas in the ventral horn, colocalizing terminals may give rise to glycinergic terminals.
-
The aim of the present study was to determine whether adeno-associated viral vector (AAV) mediated transfer of ciliary neurotrophic factor (CNTF) and RhoA shRNA has additive effects on promoting the survival and axon regeneration of retinal ganglion cells (RGCs) after optic nerve crush (ONC). Silencing effects of AAV-RhoA shRNA were confirmed by examining neurite outgrowth in PC12 cells, and by quantifying RhoA expression levels with western blotting. Young adult Fischer rats received an intravitreal injection of (i) saline, (ii) AAV green fluorescent protein (GFP), (iii) AAV-CNTF, (iv) AAV-RhoA shRNA, or (v) a combination of both AAV-CNTF and AAV-RhoA shRNA. ⋯ In the ONC model, AAV-RhoA shRNA by itself had only weak beneficial effects on RGC axon regeneration. However, when combined with AAV-CNTF, AAV-RhoA shRNA significantly improved the therapeutic effect of AAV-CNTF on axon regeneration by nearly two fold, even though there was no significant change in RGC viability. In sum, this combination of vectors increases the regenerative response and can lead to more successful therapeutic outcomes following neurotrauma.
-
Comparative Study
Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke.
Many focal cerebral ischemia models utilize the middle cerebral artery occlusion (MCAO) evoked by coagulation to induce ischemic damage in the cortex and mimic the pathology observed in human patients. A second, increasingly popular model, the photothrombotic stroke, uses a laser beam to irradiate the MCA after administration of a photosensitizing dye. This widely used procedure is slowly replacing the MCAO model because of the easiness of the surgical protocol and the reproducibility of the damage. ⋯ It also elicited higher levels of inflammatory cytokines/chemokines and increased infiltration from the periphery. In addition, only the neurons in the MCAO stroke showed phenotype plasticity by downregulating the transcription factor NeuN. These data provide a better understanding of the exact temporal and spatial dynamics of the inflammatory response in these two animal models of stroke and identify more relevant targets for human therapy.