Neuroscience
-
The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. ⋯ A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements.
-
In hippocampus, two guanylyl cyclases (NO-GC1 and NO-GC2) are involved in the transduction of the effects of nitric oxide (NO) on synaptic transmission. However, the respective roles of the NO-GC isoforms on synaptic transmission are less clear in other regions of the brain. In the present study, we used knock-out mice deficient for the NO-GC1 isoform (NO-GC1 KO) to analyze its role in the glutamatergic and GABAergic neurotransmission at pyramidal neurons in layers II/III of somatosensory cortex. ⋯ By blocking postsynaptic NMDA receptors, the NMDA receptor-dependent NO signal was shown to be linked to the effect of NO-GC1 on presynaptic GABA release. Of note, the balance between glutamatergic and GABAergic inputs at individual synapses remained unaltered in the NO-GC1 KO mice. In sum, our results indicate a role for cGMP generated by presynaptic localized NO-GC1 to adjust inhibitory and excitatory inputs at individual synapses in the somatosensory cortex.
-
Neural populations produce complex oscillatory patterns thought to implement brain function. The dominant rhythm in the healthy adult human brain is formed by alpha oscillations with a typical power peak most commonly found between 8 and 12Hz. This alpha peak frequency has been repeatedly discussed as a highly heritable and stable neurophysiological "trait" marker reflecting anatomical properties of the brain, and individuals' general cognitive capacity. ⋯ Based on the converging experimental and theoretical results from numerous recent studies, here we propose that alpha frequency variability forms the basis of an adaptive mechanism mirroring the activation level of neural populations which has important functional implications. We here integrate experimental and computational perspectives to shed new light on the potential role played by shifts in alpha peak frequency and discuss resulting implications. We further propose a potential mechanism by which alpha oscillations are regulated in a noisy network of spiking neurons in presence of delayed feedback.
-
Although often examined in isolation, a single neuromodulator typically has multiple cellular and synaptic effects. Here, we have examined the interaction of the cellular and synaptic effects of 5-HT in the lamprey spinal cord. 5-HT reduces the amplitude of glutamatergic synaptic inputs and the slow post-spike afterhyperpolarization (sAHP) in motor neurons. We examined the interaction between these effects using ventral root activity evoked by stimulation of the spinal cord. ⋯ In these experiments, 5-HT reduced the ventral root response, presumably because the reduction of the synaptic input now dominated. This was supported by computer simulations that showed that the motor output could be maintained over a wide range of synaptic input values if they were matched by changes in postsynaptic excitability. The effects of 5-HT on ventral root responses were altered by spinal cord lesions: 5-HT significantly increased ventral root responses in animals that recovered good locomotor function, consistent with a lesion-induced reduction in the synaptic effects of 5-HT, which thus biases its effects to the increase in motor neuron excitability.
-
Following a Pavlovian pairing procedure, alcohol-paired cues come to elicit behavioral responses that lead to alcohol consumption. Here we used an optogenetic approach to activate basolateral amygdala (BLA) axonal terminals targeting the shell of nucleus accumbens (AcbSh) and investigated a possible influence over cue-conditioned alcohol seeking and alcohol drinking, based on the demonstrated roles of these areas in behavioral responding to Pavlovian cues and in feeding behavior. Rats were trained to anticipate alcohol or sucrose following the onset of a discrete conditioned stimulus (CS). ⋯ Finally, the suppressive effect of photoactivation on cued-triggered seeking was also evidenced in animals trained with sucrose. Together these findings suggest that photoactivation of BLA terminals in the AcbSh can override the conditioned motivational properties of reward-predictive cues as well as unconditioned consummatory responses necessary for alcohol drinking. The findings provide evidence for a limbic-striatal influence over motivated behavior for orally consumed rewards, including alcohol.