Neuroscience
-
The loss of nigral dopaminergic neurons and the resulting dopamine (DA) depletion in the striatum (STR) lead to altered neuronal activity and enhanced beta activity in various regions of the basal ganglia (BG) motor loop in patients with Parkinson's disease and in rodents in the 6-hydroxydopamine (6-OHDA)-lesioned rat model. Intrastriatal DA graft implantation has been shown to re-innervate the host brain and restore DA input. Here, DA cell grafts were implanted into the STR of 6-OHDA-lesioned rats and the effect on neuronal activity under urethane anesthesia (1.4g/kg, injected intraperitoneally) was tested in the entopeduncular nucleus (EPN, the equivalent to the human globus pallidus internus), the output nucleus of the BG, and the globus pallidus (GP, the equivalent to the human globus pallidus externus), a key region in the indirect pathway. ⋯ This was accompanied by alleviated EPN firing rate and reinstated patterns of neuronal activity in the GP and EPN. Analysis of oscillatory activity revealed enhanced beta activity in both regions, which was reduced after grafting. In summary these data indicate restoration of BG motor loop toward normal activity by DA graft integration.
-
Neural populations produce complex oscillatory patterns thought to implement brain function. The dominant rhythm in the healthy adult human brain is formed by alpha oscillations with a typical power peak most commonly found between 8 and 12Hz. This alpha peak frequency has been repeatedly discussed as a highly heritable and stable neurophysiological "trait" marker reflecting anatomical properties of the brain, and individuals' general cognitive capacity. ⋯ Based on the converging experimental and theoretical results from numerous recent studies, here we propose that alpha frequency variability forms the basis of an adaptive mechanism mirroring the activation level of neural populations which has important functional implications. We here integrate experimental and computational perspectives to shed new light on the potential role played by shifts in alpha peak frequency and discuss resulting implications. We further propose a potential mechanism by which alpha oscillations are regulated in a noisy network of spiking neurons in presence of delayed feedback.
-
Prenatal hypoxia induced by transient intrauterine ischemia is a serious clinical problem, and at present, effective treatments are lacking. Currently, it is unknown how prenatal hypoxia affects behaviors in adulthood. Therefore, we developed a mouse model that mimics prenatal hypoxia in humans using uterine artery occlusion in late gestation. ⋯ Neurochemical analysis revealed that dopamine was increased in the female hippocampus, but not in males. Thus, neonatal SSRI treatment decreases dopamine levels in the hippocampus in females selectively. Our findings suggest that prenatal hypoxia is a risk factor for behavioral abnormalities in adulthood, and that neonatal SSRI treatment might have clinical potential for alleviating these long-term behavioral deficits.
-
Adolescence is accompanied by the maturation of several stress-responsive areas of the brain including the amygdala, a key region for the acquisition and expression of conditioned fear. These changes may contribute to the development of stress-related disorders in adolescence, such as anxiety and depression, and increase the susceptibility to these psychopathologies later in life. Here, we assessed the effects of acute restraint stress on fear learning and amygdala activation in pre-adolescent and adult male rats. ⋯ At the cellular level, the combination of stress and fear conditioning resulted in a greater number of FOS-positive cells in the basolateral nucleus of the amygdala (BLA) than fear conditioning alone, and this increase was greater in pre-adolescents than in adults. Despite age-dependent differences, we found no changes in glucocorticoid receptor (GR) levels in the amygdala of either pre-adolescent or adult males. Overall, our data indicate that stress prior to fear conditioning leads to extinction-resistant fear responses in pre-adolescent animals, and that the BLA may be one neural locus mediating these age-dependent effects of stress on fear learning.
-
In hippocampus, two guanylyl cyclases (NO-GC1 and NO-GC2) are involved in the transduction of the effects of nitric oxide (NO) on synaptic transmission. However, the respective roles of the NO-GC isoforms on synaptic transmission are less clear in other regions of the brain. In the present study, we used knock-out mice deficient for the NO-GC1 isoform (NO-GC1 KO) to analyze its role in the glutamatergic and GABAergic neurotransmission at pyramidal neurons in layers II/III of somatosensory cortex. ⋯ By blocking postsynaptic NMDA receptors, the NMDA receptor-dependent NO signal was shown to be linked to the effect of NO-GC1 on presynaptic GABA release. Of note, the balance between glutamatergic and GABAergic inputs at individual synapses remained unaltered in the NO-GC1 KO mice. In sum, our results indicate a role for cGMP generated by presynaptic localized NO-GC1 to adjust inhibitory and excitatory inputs at individual synapses in the somatosensory cortex.