Neuroscience
-
To study the development of orthographic sensitivity during elementary school, we recorded event-related brain potentials (ERPs) from 2nd and 4th grade children who were exposed to line drawing of object or animals upon which the correctly or incorrectly spelled name was superimposed. Stimulus-locked ERPs showed a modulation of a frontocentral negativity between 200 and 500ms which was larger for the 4th grade children but did not show an effect of correctness of spelling. This effect was followed by a pronounced positive shift which was only seen in the 4th grade children and which showed a modulation of spelling correctness. ⋯ Moreover, response-locked ERPs triggered to the children's button presses indicating orthographic (in)-correctness showed a succession of waves including the frontocentral error-related negativity and a subsequent negativity with a more posterior distribution. This latter negativity was generally larger for the 4th grade children. Only for the 4th grade children, this negativity was smaller for the false alarm trials suggesting a conscious registration of the error in these children.
-
Functional imaging studies have implicated the hippocampus and parahippocampal gyrus in cue-guided spatial navigation, but also many other regions. Furthermore, little is known about de-activations that take place during performance of navigation tasks, something that is of interest given that the hippocampus is a component of the default mode network, which de-activates during attention-demanding tasks. In this study 22 healthy subjects underwent whole-brain functional Magnetic Resonance Imaging (fMRI) while they navigated toward a previously learned goal in a virtual reality environment. ⋯ De-activations were seen in the medial frontal cortex and other regions of the default mode network, but not in the posterior cingulate cortex/precuneus. The findings support the involvement of the hippocampus in cue-guided navigation, but suggest that its posterior regions are particularly important. Cue-guided spatial navigation is associated with de-activation in some but not all parts of the default mode network.
-
Rett syndrome (RTT) is a neurological disorder characterized by motor and cognitive impairment, autonomic dysfunction and a loss of purposeful hand skills. In the majority of cases, typical RTT is caused by de novo mutations in the X-linked gene, MECP2. Alterations in the structure and function of neurons within the central nervous system of RTT patients and Mecp2-null mouse models are well established. ⋯ In myelinated fibers, mitochondrial densities per unit area of axoplasm were significantly altered in Mecp2+/- mice. However, conduction properties of the sciatic nerve of Mecp2 knockout mice were not different from control. These subtle changes in myelinated peripheral nerve fibers in heterozygous Mecp2 knockout mice could potentially explain some RTT phenotypes.
-
Few researchers have investigated the direction of commissural axon projections on the contralateral side of the vertebrate embryonic spinal cord, especially for comparison between its different regions. In this study, pCAGGS-GFP plasmid expression was limited to different regions of the chicken embryonic spinal cord (cervical, anterior limb, anterior thorax, posterior thorax and posterior limb) at E3 using in ovo electroporation with modified electrodes and optimal electroporation conditions. Then open-book technique was performed at E6 to analyze the direction of axon projections in different spinal cord regions. ⋯ The ratio of rostral and caudal projections was significantly different between the five investigated regions (P<0.05), except between the cervical region and the anterior limb (P>0.05). The projections were most likely to be rostral for the posterior limb followed by the posterior thorax, cervical region, anterior limb and anterior thorax. Our data for the direction of the commissural axon projections will be helpful in the future analyses of axon projection mechanisms and spinal cord-brain circuit formation.
-
Deep hypothermia therapy (HT) is a standard method for neuroprotection during complex pediatric cardiac surgery involving extracorporeal circulation and deep hypothermic cardiac arrest. The procedure, however, can provoke systemic inflammatory response syndrome (SIRS), one of the most severe side effects associated with pediatric cardiac surgery. To date, the cellular inflammatory mechanisms induced by deep HT remain to be elucidated. ⋯ Moreover, attenuation of the inflammatory response resulted in decreased apoptosis in a direct co-culture of microglia and neurons. HT reduces the inflammatory response in LPS-stimulated BV-2 microglial cells, alluding to a possible mechanism of therapeutic hypothermia-induced neuroprotection. In the future, attenuating the phospho-STAT3 pathway may lead to the development of a neuroprotectant with greater clinical efficacy.