Neuroscience
-
Activity-regulated cytoskeletal-associated protein (Arc) is implicated as a master regulator of long-term synaptic plasticity and memory formation in mammalian brain. Arc acts at synapses and within the nucleus, but the mechanisms controlling Arc localization and function are little known. As Arc transcription and translation are regulated by extracellularsignal-regulated kinase (ERK) signaling, we asked whether Arc protein itself is phosphorylated by ERK. ⋯ Thus, the neuronal activity-induced phosphomimic exhibits enhanced cytosolic localization relative to phosphodeficient and wild-type Arc. Furthermore, enhanced Ser206 phosphorylation of endogenous Arc was detected in the dentate gyrus cytoskeletal fraction after induction of long-term potentiation (LTP) in live rats. Taken together, this work demonstrates stimulus-evoked ERK-dependent phosphorylation and regulation of Arc protein.
-
This study aimed to determine the effect of exercise on locomotion, anxiety-related behavior, learning, and memory in socially isolated post-weaning rats, as well as the correlation between exercise and the concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus. Rats were randomly assigned to three groups: the control group; the social isolation group; the social isolation plus exercise (SIE) group. Social isolation conditions, with or without exercise were maintained for 90d, and then multiple behavioral tests, including the open-field test, elevated plus maze test, and Morris water maze (MWM) test were administered. ⋯ According to the probe trial session of the MWM test results, exercise training improved platform crossings' number in the socially isolated rats (P<0.05). Exercise training ameliorated social isolation-induced reduction in hippocampal BDNF and NGF content (P<0.05). These findings suggest that exercise training improves cognitive functions via increasing hippocampal BDNF and NGF concentrations in socially isolated post-weaning rats.
-
Procrastination is a prevalent problematic behavior that brings serious consequences, such as lower levels of health, wealth, and well-being. Previous research has verified that impulsivity is one of the traits most strongly correlated with procrastination. However, little is known about why there is a tight behavioral relationship between them. ⋯ Furthermore, the mediation analysis revealed that impulsivity mediated the impact of gray matter (GM) volumes of this overlapping region in the DLPFC on procrastination on another independent 84 participants' data (sample 2). In conclusion, the overlapping brain region in the DLPFC would be responsible for the close relationship between procrastination and impulsivity. As a whole, the present study extends our knowledge on procrastination, and provides a novel perspective to explain the tight impulsivity - procrastination relationship.
-
Tissue engineering protocols, such as regenerative endodontic procedures (REPs), comprise biologically based procedures designed to restore normal physiologic function. For REPs, the goal is reconstitution of the pulp-dentin complex by delivering mesenchymal stem cells (MSCs), including the stem cells of the apical papilla (SCAP) into a root canal system. Many patients regain cold sensitivity after REPs, but the mechanism is not understood. ⋯ Cold stimulation to SCAP significantly increased ATP release (p<0.01), and supernatant collected after cold stimulation to SCAP was able to activate cultured TG neurons. Co-culture with SCAP significantly increased sustained ATP-evoked inward current density (p<0.05). These data suggest that SCAP release trophic factors that act on afferent neurons to enhance cold-sensitive ion channel activity.
-
The loss of nigral dopaminergic neurons and the resulting dopamine (DA) depletion in the striatum (STR) lead to altered neuronal activity and enhanced beta activity in various regions of the basal ganglia (BG) motor loop in patients with Parkinson's disease and in rodents in the 6-hydroxydopamine (6-OHDA)-lesioned rat model. Intrastriatal DA graft implantation has been shown to re-innervate the host brain and restore DA input. Here, DA cell grafts were implanted into the STR of 6-OHDA-lesioned rats and the effect on neuronal activity under urethane anesthesia (1.4g/kg, injected intraperitoneally) was tested in the entopeduncular nucleus (EPN, the equivalent to the human globus pallidus internus), the output nucleus of the BG, and the globus pallidus (GP, the equivalent to the human globus pallidus externus), a key region in the indirect pathway. ⋯ This was accompanied by alleviated EPN firing rate and reinstated patterns of neuronal activity in the GP and EPN. Analysis of oscillatory activity revealed enhanced beta activity in both regions, which was reduced after grafting. In summary these data indicate restoration of BG motor loop toward normal activity by DA graft integration.