Neuroscience
-
Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. ⋯ In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training.
-
Neuro-anatomical evidence supports the potential for threat-related factors, such as fear, anxiety and vigilance, to influence brainstem motor nuclei controlling eye movements, as well as the vestibular nuclei. However, little is known about how threat influences human ocular responses, such as eye saccades (ES), smooth pursuit eye tracking (SP), and optokinetic nystagmus (OKN), and whether these responses can be facilitated above normal baseline levels with a natural source of threat. This study was designed to examine the effects of height-induced postural threat on the gain of ES, SP and OKN responses in humans. ⋯ Significant correlations were found between changes in physiological arousal and OKN gain. Observations of changes with height in OKN and SP support neuro-anatomical evidence of threat-related mechanisms influencing both oculo-motor nuclei and vestibular reflex pathways. Although further study is warranted, the findings suggest that potential influences of fear, anxiety and arousal/alertness should be accounted for, or controlled, during clinical vestibular and oculo-motor testing.
-
The receptive fields of many auditory cortical neurons are multidimensional and are best represented by more than one stimulus feature. The number of these dimensions, their characteristics, and how they differ with stimulus context have been relatively unexplored. Standard methods that are often used to characterize multidimensional stimulus selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MIDs), are either limited to Gaussian stimuli or are only able to recover a small number of stimulus features due to data limitations. ⋯ Excitatory and suppressive features coded different acoustic contexts: excitatory features encoded higher temporal and spectral modulations, while suppressive features had lower modulation frequency preferences. We found that the excitatory and suppressive features themselves were sensitive to stimulus context when we employed two stimuli that differed only in their short-term correlation structure: while the linear features were similar, the secondary features were strongly affected by stimulus statistics. These results show that multidimensional receptive field processing is influenced by feature type and stimulus context.
-
Explicit negative attitudes toward obese individuals are well documented and seem to modulate the activity of perceptual areas, such as the Extrastriate Body Area (EBA) in the lateral occipito-temporal cortex, which is critical for body-shape perception. Nevertheless, it is still unclear whether EBA serves a role in implicit weight-stereotypical bias, thus reflecting stereotypical trait attribution on the basis of perceptual cues. Here, we used an Implicit Association Test (IAT) to investigate whether applying transcranial direct current stimulation (tDCS) over bilateral extrastriate visual cortex reduces pre-existing implicit weight stereotypical associations (i.e. "Bad" with Fat and "Good" with Slim, valence-IAT). ⋯ Furthermore, the effect was specific for the polarity and hemisphere of stimulation. Importantly, tDCS affected the responses only in male participants, who presented a reliable weight-bias during sham condition, but not in female participants, who did not show reliable weight-bias at sham condition. The present results suggest that negative attitudes toward obese individuals may reflect neural signals from the extrastriate visual cortex.
-
Studies of major depressive disorder (MDD) in postmortem brain tissue report enhanced binding to inhibitory serotonin-1A autoreceptors in midbrain dorsal raphe and reductions in length of axons expressing the serotonin transporter (SERT) in dorsolateral prefrontal cortex. The length density of axons expressing SERT in the orbitofrontal cortex (OFC) was determined in 18 subjects with MDD and 17 age-matched control subjects. A monoclonal antibody was used to immunohistochemically label the SERT in fixed sections of OFC. ⋯ Neither gender, tissue pH, postmortem interval, 5-HTTLPR genotype, time in fixative, nor death by suicide had a significant effect on axon length. The age-related decrease in SERT-ir axon length in MDD may reflect pathology of ascending axons passing through deep white matter hyperintensities. Greater length of axons expressing SERT in younger subjects with MDD may result in a significant deficit in serotonin availability in OFC.