Neuroscience
-
Cortical involvement in postural control is well recognized, however the role of non-visual afferents remains unclear. Parietal cortical areas are strongly implicated in vestibulo-spatial functions, but topographical localization during balance tasks remains limited. Here, we use electroencephalography (EEG) during continuous balance tasks of increasing difficulty at single electrode positions. ⋯ Our results demonstrate the functional importance of bilateral central and parietal cortices in continuous balance control. The hemispheric asymmetry observed implies that the non-dominant hemisphere is involved with online monitoring of postural control. Although the posterior parietal asymmetry found may relate to vestibular, somatosensory or multisensory feedback processing, we argue that the finding relates to active balance control rather than simple sensory-intake or reflex circuit activation.
-
Pragmatics may be defined as the ability to communicate by expressing and recognizing intentions. The objective of this meta-analysis was to identify neural substrates for comprehension of pragmatic content in general, as well as the differences between pragmatic forms, and to describe if there is differential recruitment of brain areas according to natural language. This meta-analysis included 48 functional magnetic resonance imaging studies that reported pragmatic versus literal language contrasts. ⋯ In conclusion, pragmatic language comprehension involves classical language areas in bilateral perisylvian regions, along with the medial prefrontal cortex, an area involved in social cognition. Together, these areas could represent the "pragmatic language network". Nonetheless, when proposing a universal neural substrate for all forms of pragmatic language, the diversity among studies in terms of pragmatic form, and configuration, must be taken into consideration.
-
The Weak Central Coherence account of autism spectrum disorders posits that individuals with ASD utilize a detail-oriented information processing bias. While this local bias is helpful in visual search tasks, ASD individuals falter in social cognition tasks where coherence is advantageous. The present study examined the neural correlates of Weak Central Coherence in ASD during visual and social processing. ⋯ The TD group showed significantly increased areas of activity over the ASD group in the Shape task in regions associated with executive control, such as the medial prefrontal cortex and middle frontal gyrus, suggesting increased interference from the global/social information. During the Emotion condition, the ASD group showed decreased connectivity between frontal and posterior regions and between body perception and motor networks, suggesting a possible difference in mirroring. The findings suggest that social cognitive factors, not visual processing biases, underlie the observed behavioral differences.
-
Functional plasticity of the adult brain is well established. Recently, the structural counterpart to such plasticity has been suggested by neuroimaging studies showing experience-dependent differences in gray matter (GM) volumes. Within the primary and secondary olfactory cortices, reduced GM volumes have been demonstrated in patients with olfactory loss. ⋯ We found significantly increased post-operative GM volumes within the primary (left piriform cortex, right amygdala) and secondary (right orbitofrontal cortex, caudate nucleus, hippocampal-parahippocampal complex and bilateral temporal poles) olfactory networks, and decreased GM volumes within the secondary network only (left caudate nucleus and temporal pole, bilateral hippocampal-parahippocampal complex). As a control measure, we assessed GM change within V1, S1 and A1, where there were no suprathreshold voxels. To our knowledge, this is the first study to demonstrate GM structural plasticity within the primary and secondary olfactory cortices, following restoration of olfaction.
-
Cognitive impairment (CI), a debilitating and pervasive feature of multiple sclerosis (MS), is correlated with hippocampal atrophy. Findings from postmortem MS hippocampi indicate that expression of genes involved in both excitatory and inhibitory neurotransmission are altered in MS, and although deficits in excitatory neurotransmission have been reported in the MS model experimental autoimmune encephalomyelitis (EAE), the functional consequence of altered inhibitory neurotransmission remains poorly understood. In this study, we used electrophysiological and biochemical techniques to examine inhibitory neurotransmission in the CA1 region of the hippocampus in EAE. ⋯ Although plasma membrane expression of the GABA transporter GAT-3 was decreased in the EAE hippocampus, an increased surface expression of α5 subunit-containing GABAA receptors appears to be primarily responsible for the increase in tonic inhibition during EAE. Enhanced tonic inhibition during EAE was associated with decreased CA1 pyramidal cell excitability and inhibition of α5 subunit-containing GABAA receptors with the negative allosteric modulator L-655,708 enhanced pyramidal cell excitability in EAE mice. Together, our results suggest that altered GABAergic neurotransmission may underlie deficits in hippocampus-dependent cognitive function in EAE and MS.