Neuroscience
-
Neuropathic pain is associated with gene expression changes within the dorsal root ganglion (DRG) after peripheral nerve injury, which involves epigenetic mechanisms. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic activator, regulates gene transcriptional activity by protein posttranslational modifications. ⋯ Furthermore, pharmacological inhibition of CARM1 mitigated peripheral nerve injury-induced mechanical allodynia and thermal hyperalgesia. Given that CARM1 inhibition or knockdown attenuated the induction and maintenance of neuropathic pain after peripheral nerve injury, our findings suggest that CARM1 may serve as a promising therapeutic target for neuropathic pain treatment in clinical applications.
-
Age- and menopause-related deficits in working memory can be partially restored with estradiol replacement in women and female nonhuman primates. Working memory is a cognitive function reliant on persistent firing of dorsolateral prefrontal cortex (dlPFC) neurons that requires the activation of GluN2B-containing glutamate NMDA receptors. We tested the hypothesis that the distribution of phospho-Tyr1472-GluN2B (pGluN2B), a predominant form of GluN2B seen at the synapse, is sensitive to aging or estradiol treatment and coupled to working memory performance. ⋯ On the other hand, the percentage of pGluN2B gold particles in the spine cytoplasm was decreased with E treatment in young, but increased with E in aged monkeys. In aged monkeys, DR average accuracy inversely correlated with the percentage of synaptic pGluN2B, while it positively correlated with the percentage of cytoplasmic pGluN2B. Together, E replacement may promote cognitive health in aged monkeys, in part, by decreasing the relative representation of synaptic pGluN2B and potentially protecting the dlPFC from calcium toxicity.
-
Emerging evidence suggests that hypoxia-inducible factors (specifically, HIF-1α) and Notch signaling are involved in epileptogenesis and that cross-coupling exists between HIF-1α and Notch signaling in other diseases, including tumors and ischemia. However, the exact molecular mechanisms by which HIF-1α and Notch signaling affect the development of epilepsy, especially regarding neurogenesis, remain unclear. ⋯ The immunoprecipitation data illustrated that HIF-1α activated Notch signaling by physically interacting with the Notch intracellular domain (NICD) in epilepsy. In conclusion, our results suggested that HIF-1α-Notch signaling enhanced neurogenesis in acute epilepsy and that neurogenesis during epileptogenesis was reduced once this pathway was blocked; thus, members of this pathway might be potential therapeutic targets for epilepsy.
-
Deficits in dopaminergic function are thought to underlie attention-deficit/hyperactivity disorder (ADHD). Dopaminergic neurons are the main source of dopamine (DA), a neurotransmitter that acts as a neuromodulator of cognitive function in the prefrontal cortex, including the anterior cingulate cortex (ACC), which receives dopaminergic inputs from the ventral tegmental area. The spontaneously hypertensive rat (SHR) has been widely studied as an animal model of ADHD. ⋯ Furthermore, DA activity enhanced the amplitude of evoked and unitary IPSCs from fast-spiking interneurons; the amplitude was also larger in control WKY than in SHRs. Notably, the amplitude of evoked IPSCs was enhanced by the activation of D1-like receptor-mediated pathways. These results suggest that hypofunction of D1-like receptor-mediated regulation of GABAergic inhibitory synaptic transmission onto layer V pyramidal cells of the ACC may contribute to the pathophysiology of ADHD.
-
Mitochondrial Carrier Homolog 2 (MTCH2) acts as a receptor for the BH3 interacting-domain death agonist (BID) in the mitochondrial outer membrane. Loss of MTCH2 affects mitochondria energy metabolism and function. MTCH2 forebrain conditional KO (MTCH2 BKO) display a deficit in hippocampus-dependent cognitive functions. ⋯ MTCH2 BKO exhibit impaired spatial but not motor learning and an impairment in long-term potentiation (LTP) in hippocampal slices. Moreover, MTCH2 BKO express an increase in activated microglia, in addition to a reduction in neuron density in the hippocampus, but do not express amyloid-β plaques or neurofibrillary tangles. These results highlight the role of mitochondria in the normal hippocampus-dependent memory formation.