Neuroscience
-
Steroids have been demonstrated to play profound roles in the regulation of hippocampal function by acting on their receptors, which need coactivators for their transcriptional activities. Previous studies have shown that steroid receptor coactivator-1 (SRC-1) is the predominant coactivator in the hippocampus, but its exact role and the underlying mechanisms remain unclear. In this study, we constructed SRC-1 RNA interference (RNAi) lentiviruses, injected them into the hippocampus of male mice, and then examined the changes in the expression of selected synaptic proteins, CA1 synapse density, postsynaptic density (PSD) thickness, and in vivo long-term potentiation (LTP). ⋯ The in vivo results showed that SRC-1 knockdown significantly decreased the expression of synaptic proteins and CA1 synapse density as well as PSD thickness; SRC-1 knockdown also significantly impaired in vivo LTP and disrupted spatial learning and memory. The in vitro results showed that while the expression of synaptic proteins was significantly decreased by SRC-1 knockdown, pCREB expression was also significantly decreased. The above results suggest a pivotal role of SRC-1 in the regulation of hippocampal synaptic plasticity and spatial learning and memory, strongly indicating SRC-1 may serve as a novel therapeutic target for hippocampus-dependent memory disorders.
-
Nasal mucosa has roles in warming and humidifying inspired air and is highly sensitive to mechanical stimuli. Moreover, the upper part of the nasal mucosa expresses olfactory receptors processing olfactory information. Although the somatosensory map of the face in the primary (S1) and secondary (S2) somatosensory cortices is clearly documented, the map of the nasal mucosa and the effect of odors on their activities are largely unknown. ⋯ Moreover, the amplitude of S1 excitation was similar between air puff stimulation with and without an odor, amyl acetate. In contrast to contralateral S1, air puff stimulation with the odor showed a faint optical signal increase in the ipsilateral piriform cortex. These results suggest that somatosensory information from the nasal mucosa and skin, and upper pharynx are processed in spatially continuous regions of S1, and interaction between somatosensory and olfactory systems is relatively small in contralateral S1.
-
Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). ⋯ A deficit in COX IV expression was confirmed by immunohistochemistry. Overall, our data demonstrate an age-dependent impairment in mitochondrial function and gamma frequency activity associated with the abnormal expression of α-syn. These findings provide mechanistic insights into the consequences of over-expression of α-syn which might contribute to cognitive decline.
-
An increase of extracellular dopamine (DA) has been implicated in the psychostimulant properties of 3,4-methylenedioxymethamphetamine (MDMA). Although this drug has been reported to affect the DA uptake transporter (DAT), it might activate other mechanisms to regulate the outflow of DA in the brain. Our aim was to examine the overall effects of MDMA on the release of DA in the striatum. ⋯ Electrophysiological recordings of dopaminergic neurons in SNpc showed that MDMA depressed the effects of nicotine. Our data are consistent with a prevalent MDMA-induced inhibition of the synaptic release of DA in the dorsal striatum mediated by an interaction with nicotinic receptors. This drug also blocks DAT acting on a different site from cocaine and, at higher concentrations, has amphetamine-like releasing properties.
-
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of elderly dementia in the world. At present, acetylcholine inhibitors, such as donepezil, galantamine and rivastigmine, are used for AD therapy, but the therapeutic efficacy is limited. We recently proposed T-type voltage-gated Ca2+ channels' (T-VGCCs) enhancer as a new therapeutic candidate for AD. ⋯ Chronic SAK3 (0.5 mg/kg/day) oral administration for 3 months from 9 months of age improved cognitive function and inhibited Aβ deposition in 12-month-old NL-F mice. Using microarray and real-time PCR analysis, we discovered serum- and glucocorticoid-induced protein kinase 1 (SGK1) as one of possible genes involved in the inhibition of Aβ deposition and improvement of cognitive function by SAK3. These results support the idea that T-VGCC enhancer, SAK3 could be a novel candidate for disease-modifying therapeutics for AD.