Neuroscience
-
Steroids have been demonstrated to play profound roles in the regulation of hippocampal function by acting on their receptors, which need coactivators for their transcriptional activities. Previous studies have shown that steroid receptor coactivator-1 (SRC-1) is the predominant coactivator in the hippocampus, but its exact role and the underlying mechanisms remain unclear. In this study, we constructed SRC-1 RNA interference (RNAi) lentiviruses, injected them into the hippocampus of male mice, and then examined the changes in the expression of selected synaptic proteins, CA1 synapse density, postsynaptic density (PSD) thickness, and in vivo long-term potentiation (LTP). ⋯ The in vivo results showed that SRC-1 knockdown significantly decreased the expression of synaptic proteins and CA1 synapse density as well as PSD thickness; SRC-1 knockdown also significantly impaired in vivo LTP and disrupted spatial learning and memory. The in vitro results showed that while the expression of synaptic proteins was significantly decreased by SRC-1 knockdown, pCREB expression was also significantly decreased. The above results suggest a pivotal role of SRC-1 in the regulation of hippocampal synaptic plasticity and spatial learning and memory, strongly indicating SRC-1 may serve as a novel therapeutic target for hippocampus-dependent memory disorders.
-
An increase of extracellular dopamine (DA) has been implicated in the psychostimulant properties of 3,4-methylenedioxymethamphetamine (MDMA). Although this drug has been reported to affect the DA uptake transporter (DAT), it might activate other mechanisms to regulate the outflow of DA in the brain. Our aim was to examine the overall effects of MDMA on the release of DA in the striatum. ⋯ Electrophysiological recordings of dopaminergic neurons in SNpc showed that MDMA depressed the effects of nicotine. Our data are consistent with a prevalent MDMA-induced inhibition of the synaptic release of DA in the dorsal striatum mediated by an interaction with nicotinic receptors. This drug also blocks DAT acting on a different site from cocaine and, at higher concentrations, has amphetamine-like releasing properties.
-
Na+, K+-ATPase is an important regulator of brain excitability. Accordingly, compelling evidence indicates that impairment of Na+, K+-ATPase activity contributes to seizure activity in epileptic mice and human with epilepsy. In addition, this enzyme is crucial for plasma membrane transport of water, glucose and several chemical mediators, including glutamate, the major excitatory transmitter in the mammalian brain. ⋯ Moreover, DRRSAb prevented the increase in glutamate levels in the incubation media of slices from pilocarpine-treated mice. In addition, in vivo intrahippocampal injection of DRRSAb restored crossing activity of pilocarpine-treated mice in the open-field test. Overall, the present data further support the hypothesis that activation of the Na+, K+-ATPase is a promising therapeutic strategy for epilepsy.
-
Auditory dysfunction is a common occurrence in individuals with autism spectrum disorder (ASD). While most cases of ASD are of unknown etiology, in utero exposure to the antiepileptic valproic acid (VPA) significantly increases risk. We have previously identified significant dysmorphology and hypoplasia in the auditory brainstem of humans with ASD and rodents exposed to VPA in utero. ⋯ Finally, we saw no difference in the surface area or volume of calyx terminals in the MNTB, although there was a relative increase in the surface area and volume of calyces in VPA-exposed animals. These results indicate hypotrophy of the auditory brainstem, abnormal calcium regulation and reduced dopaminergic input. Together, such alterations suggest abnormal brainstem circuitry and significant auditory dysfunction in VPA-exposed animals.
-
Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). ⋯ A deficit in COX IV expression was confirmed by immunohistochemistry. Overall, our data demonstrate an age-dependent impairment in mitochondrial function and gamma frequency activity associated with the abnormal expression of α-syn. These findings provide mechanistic insights into the consequences of over-expression of α-syn which might contribute to cognitive decline.