Neuroscience
-
Randomized Controlled Trial
Neurofeedback training effects on inhibitory brain activation in ADHD: a matter of learning?
Neurofeedback training (NF) is a promising non-pharmacological treatment for ADHD that has been associated with improvement of attention-deficit/hyperactivity disorder (ADHD)-related symptoms as well as changes in electrophysiological measures. However, the functional localization of neural changes following NF compared to an active control condition, and of successful learning during training (considered to be the critical mechanism for improvement), remains largely unstudied. Children with ADHD (N=16, mean age: 11.81, SD: 1.47) were randomly assigned to either slow cortical potential (SCP, n=8) based NF or biofeedback control training (electromyogram feedback, n=8) and performed a combined Flanker/NoGo task pre- and post-training. ⋯ Subjects who were successful learners (n=9) also showed increased activation in an extensive inhibitory network irrespective of the type of training. Activation increased in an extensive inhibitory network following NF training, and following successful learning through NF and control biofeedback. Although this study was only powered to detect large effects and clearly requires replication in larger samples, the results suggest a crucial role for learning effects in biofeedback trainings.
-
Randomized Controlled Trial
The Role of Left Dorsolateral Prefrontal Cortex in Language Processing.
In addition to the role of left frontotemporal areas in language processing, there is increasing evidence that language comprehension and production require cognitive control and working memory resources involving the left dorsolateral prefrontal cortex (DLPFC). The aim of this study was to investigate the role of the left DLPFC in both language comprehension and production. ⋯ However, additional analyses revealed that the polarity of tDCS effects was highly correlated across tasks, implying differential individual susceptibility to the effect of tDCS within participants. Overall, our findings demonstrate that left DLPFC is part of the complex cortical network associated with language processing.