Neuroscience
-
During pregnancy, the progesterone metabolite, allopregnanolone (ALLO), becomes elevated and has been associated with altered levels within the CNS and resulting changes in GABAA receptor function. Pregnant animals poorly compensate reflexes for a decrease in blood pressure during hemorrhage. Previous works suggested that ALLO decreases baroreflex responses by central actions, however, the underlying mechanisms are poorly understood. ⋯ In current-clamp mode, ALLO perfusion increased failure of ST stimulation to trigger action potentials in most neurons. Thus, our results indicate that ALLO acts to suppress visceral afferent ST synaptic transmission at first synapses by activating pharmacologically distinct GABAA subtypes at different concentration ranges. This ALLO-mediated attenuated visceral afferent signal integration in NTS may underlie reflex changes in blood pressure during gestation.
-
Chemokines are known to have a role in the nervous system, influencing a range of processes including the development of chronic pain. To date there are very few studies describing the functions of the chemokine lymphotactin (XCL1) or its receptor (XCR1) in the nervous system. We investigated the role of the XCL1-XCR1 axis in nociceptive processing, using a combination of immunohistochemical, pharmacological and electrophysiological techniques. ⋯ Incubation of brainstem slices with XCL1 induced activation of c-Fos, ERK and p38 in the superficial layers of Vc, and enhanced levels of intrinsic excitability. These effects were blocked by the XCR1 antagonist viral CC chemokine macrophage inhibitory protein-II (vMIP-II). This study has identified for the first time a role for XCL1-XCR1 in nociceptive processing, demonstrating upregulation of XCR1 at nerve injury sites and identifying XCL1 as a modulator of central excitability and signaling via XCR1 in Vc, a key area for modulation of orofacial pain, thus indicating XCR1 as a potential target for novel analgesics.
-
The muscarinic receptor agonist carbachol (CCh) can induce activity in the theta range (4-15 Hz) in the entorhinal cortex (EC), but the underlying network mechanisms remain unclear. Here, we investigated the interplay between interneurons and principal cells in the EC during CCh-induced theta-like field oscillations in an in vitro brain slice preparation using tetrodes. Field oscillations at 10.1 Hz (IQR = 9.5-10.9 Hz) occurred during bath application of CCh (100 μM; n = 32 experiments) and were associated with single-unit (n = 189) firing. ⋯ Blocking ionotropic glutamatergic transmission abolished CCh-induced field oscillations (n = 6), suggesting that ionotropic glutamatergic receptor signaling is necessary for their generation. Our results show that neuronal network interactions leading to CCh-induced theta-like field oscillations rest on the close interplay between interneurons and principal cells and that interneurons modulate principal cell activity during such oscillatory activity. Moreover, they underscore the role of ionotropic glutamatergic transmission in this type of oscillations.
-
The hypothalamic energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulator of counter-regulatory responses to hypoglycemia, responds to pharmacological manipulation of hindbrain AMPK activity. Dorsomedial hindbrain A2 noradrenergic neurons express hypoglycemia-sensitive metabolo-sensory biomarkers, including AMPK. Here, adult male rats were pretreated by intra-caudal fourth ventricular administration of the selective neurotoxin 6-hydroxydopamine (6-OHDA) to determine if catecholamine signaling from the aforesaid site governs hypothalamic AMPK activation during insulin-induced hypoglycemia (IIH). ⋯ Results demonstrate site-specific bi-directional adjustments in hypothalamic AMPK reactivity to hypoglycemia. Intensification of ARH/VMH pAMPK by 6-OHDA implies dorsomedial hindbrain improvement of energy balance in those sites during IIH. Neurotoxin-mediated augmentation versus suppression of basal catabolic (ARH POMC/VMH steroidogenic factor-1) or IIH-associated anabolic (ARH NPY) neuropeptide profiles, respectively, may involve local AMPK-dependent against independent mechanisms.
-
Neural activity varies continually from moment to moment. Such temporal variability (TV) has been highlighted as a functionally specific brain property playing a fundamental role in cognition. We sought to investigate the mechanisms involved in TV changes between two basic behavioral states, namely having the eyes open (EO) or eyes closed (EC) in vivo in humans. ⋯ This reduction is correlated with an increase in energy consumption and with regional GABAA receptor density. This suggests that the modulation of TV by behavioral state involves an increase in overall neural activity that is related to an increased effect from GABAergic inhibition in addition to any excitatory changes. These findings contribute to our understanding of the mechanisms underlying activity variability in the human brain and its control.