Neuroscience
-
Focal administration of pharmacological agents during in vivo recordings is a useful technique to study the functional properties of neural microcircuits. However, the lack of visual control makes this task difficult and inaccurate, especially when targeting small and deep regions where spillover to neighboring regions is likely to occur. An additional problem with recording stability arises when combining focal drug administration with in vivo intracellular recordings, which are highly sensitive to mechanical vibrations. ⋯ We applied tetrodotoxin (TTX 10 µM) during whole-cell recordings in the striatum, while simultaneously obtaining extracellular recordings in S1 and M1. The focal application of TTX in the striatum blocked Up states in the recorded striatal neurons, without affecting the cortical activity. We also describe two different approaches for precisely releasing the drugs without unwanted leakage along the pipette approach trajectory.
-
An understudied symptom of the genetic disorder Neurofibromatosis type 1 (NF1) is chronic idiopathic pain. We used targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin, the protein product of the Nf1 gene, and pain responses. Our study data identified a protein-interaction network with collapsin response meditator protein 2 (CRMP2) as a node and neurofibromin, syntaxin 1A, and the N-type voltage-gated calcium (CaV2.2) channel as interaction edges. ⋯ The data presented here shows that disrupting the CRMP2-neurofibromin interface is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release elicited by Nf1 gene editing. As a consequence of these effects, the CNRP1 peptide reversed hyperalgesia to thermal stimulation of the hindpaw observed in Nf1-edited rats. Our findings support future pharmacological targeting of the CRMP2/neurofibromin interface for NF1-related pain relief.
-
Type 2 diabetes mellitus (T2DM)-associated oxidative stress contributes to cognitive deficiencies and Alzheimer's disease (AD). Sulforaphane (SFN) is a pharmacological activator of Nrf2 that provokes Nrf2-mediated intracellular defenses, including antioxidant and anti-inflammatory responses, under oxidative stress (OS) conditions. This study investigated the effects of SFN on DM-related cognitive decline and its potential mechanisms. ⋯ Accordingly, immunoblotting and immunohistochemistry analyses showed that SFN decreased the levels of amyloid-β (Aβ) oligomers and Aβ 1-42 plaques as well as phospho-tau at Ser396 and Thr231 in the DM mouse hippocampus. This protective effect of SFN might be due to the activation of Nrf2-regulated antioxidant defense deficiencies in the DM mice, as SFN increased the Nrf2 nuclear accumulation and the downstream expression of the antioxidases HO-1 and NQO1 and reduced the levels of the reactive oxygen/nitrogen species (ROS/RNS) in DM mouse brains. Our results confirm that SFN has potential as a therapeutic agent to protect T2DM patients from cognitive deficiencies and AD-like pathological lesions related to the upregulation of Nrf2-regulated antioxidant defenses.
-
We previously showed that apelin-13 ameliorates chronic normobaric hypoxia (CNH)-induced anxiety-like behavior in mice, the mechanism, however, is not well known. This study aims to investigate whether SIRT1 is involved in the anxiolytic effect of apelin-13 in CNH-treated mice, and to illustrate the potential underlying mechanism. We showed that apelin-13 treatment reversed a decrease in SIRT1 and an increase in acetylated p65 (lysine 310) proteins' expression in hippocampus of CNH-treated mice, indicating that apelin-13 inhibited NF-κB signaling pathway by activating SIRT1. ⋯ Finally, blockade of NF-κB activity by PDTC diminished CNH-induced anxiety-like behavior, indicating that NF-κB was involved in CNH-induced anxiety-like behavior in mice. In conclusion, this study provides the first evidence that SIRT1 mediates the anxiolytic effect of apelin-13 in CNH-treated mice through the inhibition of NF-κB pathway. These results imply that dysfunction of the apelin-SIRT1-NF-κB axis in hippocampus represents a potential mechanism that results in the induction of neuroinflammation and reduction in neuroprotection, thus induces anxiety-like behavior in CNH-treated mice.
-
Latent sensitization is a model of chronic pain in which an injury triggers a period of hyperalgesia followed by an apparent recovery, but in which pain sensitization persists but is suppressed by opioid and adrenergic receptors. One important characteristic of latent sensitization is that hyperalgesia can be triggered by acute stress. To determine whether the effect of stress is mimicked by the activation of corticotropin-releasing factor (CRF) signaling in the brain, rats with latent sensitization induced by injecting complete Freund's adjuvant (CFA, 50 μl) in one hind paw were given an intracerebroventricular (i.c.v.) injection of CRF. ⋯ Intrathecal lidocaine did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). These results show that i.c.v. CRF mimicked the hyperalgesic response triggered by stress during latent sensitization, possibly by blocking inhibitory spinal descending signals that suppress hyperalgesia.