Neuroscience
-
Ca2+-binding protein 1 (CaBP1) is a Ca2+-sensing protein similar to calmodulin that potently regulates voltage-gated Ca2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). ⋯ In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories.
-
Replacement of dead neurons following ischemia, either via enhanced endogenous neurogenesis or stem cell therapy, has long been sought. Unfortunately, while various therapies that enhance neurogenesis or stem cell therapies have proven beneficial in animal models, they have all uniformly failed to truly replace dead neurons in the ischemic core to facilitate long-term recovery. Remarkably, we observe robust repopulation of medium-spiny neurons within the ischemic core of juvenile mice following experimental stroke. ⋯ Ablation of neurogenesis using irradiation prevented neuronal replacement and functional recovery in MCAo-injured juvenile mice. In contrast, findings in adults were consistent with previous reports, that newborn neurons failed to mature and died, offering little therapeutic potential. These data provide support for neuronal replacement and consequent functional recovery following ischemic stroke and new targets in the development of novel therapies to treat stroke.
-
Apolipoprotein E (ApoE) is an important lipid carrier in both the periphery and the brain. The ApoE ε4 allele (ApoE4) is the single most important genetic risk-factor for Alzheimer's disease (AD) while the ε2 allele (ApoE2) is associated with a lower risk of AD-related neurodegeneration compared to the most common variant, ε3 (ApoE3). ApoE genotype affects a variety of neural circuits; however, the olfactory system appears to provide early biomarkers of ApoE genotype effects. ⋯ Olfactory system excitability and odor responsiveness were similarly determined by ApoE genotype, with an ApoE4 > ApoE3 > ApoE2 excitability ranking. Although motivated behavior is influenced by many processes, hyper-excitability of ApoE4 mice may contribute to impaired odor habituation, while hypo-excitability of ApoE2 mice may contribute to its protective effects. Given that these ApoE mice do not have AD pathology, our results demonstrate how ApoE affects the olfactory system at early stages, prior to the development of AD.
-
Several circulating microRNAs (miRNAs) have been proved to serve as stable biomarkers in blood for acute ischemic stroke (AIS). However, the functions of these biomarkers remain elusive. By conducting the integration analysis of circulating miRNAs and peripheral whole-blood mRNAs using bioinformatics methods, we explored the biological role of these circulating markers in peripheral whole blood at the genome-wide level. ⋯ Finally, we analyzed biological functions of Mo-mRNAs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and constructed networks among the Mo-mRNAs, overlapped M-miRNAs (Mo-miRNAs), and their functions. The Mo-mRNAs were enriched in functions such as platelet degranulation, immune response, and pathways associated with phagosome biology and Staphylococcus aureus infection. This study provides an integrated view of interactions among circulating miRNAs and peripheral whole-blood mRNAs involved in the pathophysiological processes of male AIS.