Neuroscience
-
Direct reprogramming of non-fibroblastic cells to the neuronal cell types including induced neurons (iNs) and induced neural stem cells (iNSCs) has provided an alternative approach for the direct reprogramming of fibroblasts to those cells. However, to increase the efficiency of the reprogramming process the underlying mechanisms should be clarified. In the current study, we analyzed the gene expression profiles of five different cellular conversions to understand the most significant molecular mechanisms and transcription factors (TFs) underlying each conversion. ⋯ Furthermore, protein complexes were identified from constructed protein-protein interaction networks for DE-TFs. Finally, we proposed a list of main regulators for each conversion; for example, in the direct conversion of epithelial-like cells (ECs) to iNSCs, combination of centrality with active modules or protein complex analyses highlighted the role of POU3F2, BACH1, AR, PBX1, SOX2 and NANOG genes in this conversion. To the best of our knowledge, this study is the first one that analyzed the direct conversion of non-fibroblastic cells toward iNs and iNSCs and we believe that the expression manipulation of identified genes may increase efficiency of these processes.
-
Hypofunction of NMDA receptors in parvalbumin (PV)-positive interneurons has been proposed as a potential mechanism for cortical abnormalities and symptoms in schizophrenia. GluN2C-containing receptors have been linked to this hypothesis due to the higher affinity of psychotomimetic doses of ketamine for GluN1/2C receptors. However, the precise cell-type expression of GluN2C subunit remains unknown. ⋯ GluN2C was found to be enriched in several first-order and higher order thalamic nuclei. Interestingly, we found that a previous GluN2C β-gal reporter model excluded expression from PV-neurons and certain thalamic nuclei but exhibited expression in the retrosplenial cortex. GluN2C's unique distribution in neuronal and non-neuronal cells in a brain region-specific manner raises interesting questions regarding the role of GluN2C-containing receptors in the central nervous system.
-
Brain structural connectivity is known to be altered in cases of intrauterine growth restriction and premature birth, although the specific effect of maternal nutritional restriction, a common burden in human populations, has not been assessed yet. Here we analyze the effects of maternal undernutrition during pregnancy and lactation by establishing three experimental groups of female mice divided according to their diet: control (Co), moderate calorie-protein restriction (MCP) and severe protein restriction (SP). Nutritionally restricted dams gained relatively less weight during pregnancy and the body weight of the offspring was also affected by maternal undernutrition, showing global growth restriction. ⋯ We also found a differential effect on network parameters: network degree, clustering, characteristic path length and small-worldness remained mainly unchanged, while the rich-club index was lower in nutritionally restricted animals. Rich-club decrease reflects an impairment in the structure by which brain regions with large number of connections tend to be more densely linked among themselves. Overall, the findings presented here support the hypothesis that chronic nutritional stress produces long-term changes in brain structural connectivity.
-
Receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in the pathology of several progressive neurodegenerative disorders including Huntington's disease (HD). We previously showed that the expression of RAGE and its colocalization with ligands were increased in the striatum of HD patients, increasing with grade severity, and that the pattern of RAGE expression coincided with the medio-lateral pattern of neurodegeneration. However, the exact role of RAGE in HD remains elusive. ⋯ The rostro-caudal location did not affect RAGE expression. RAGE was predominantly expressed in the medium spiny neurons (MSN) where it colocalized most extensively with N-carboxymethyllysine (CML), which largely contradicts with observations from human HD brains. Overall, the tgHD rat model only partially recapitulated the pattern in striatal RAGE expression in human brains, raising a question about its reliability as an animal model for future functional studies.