Neuroscience
-
Mitochondrial dysfunction and oxidative stress are very prominent and early features in Parkinson's disease (PD) and in animal models of PD. Thus, antioxidant therapy for PD has been proposed, but in clinical trials such strategies have met with very limited success. Methylene blue (MB), a small-molecule synthetic heterocyclic organic compound that acts as a renewable electron cycler in the mitochondrial electron transport chain, manifesting robust antioxidant and cell energetics-enhancing properties, has recently been shown to have significant beneficial effects in reducing nigrostriatal dopaminergic loss and motor impairment in acute toxin models of PD. ⋯ Oral delivery of low-dose MB significantly ameliorated MPTP/p-induced deficits in motor coordination, as well as degeneration of tyrosine hydroxylase (TH)-positive neurons of the substantia nigra and TH-positive terminals in the striatum. Importantly, olfactory dysfunction was ameliorated by MB treatment, whereas this benefit is not observed with currently available anti-Parkinsonian medications. These results indicate that low-dose MB is a promising neuroprotective intervention for both motor and non-motor features of PD.
-
While the VGF-derived TLQP peptides have been shown to prevent neuronal apoptosis, and to act on synaptic strengthening, their involvement in Amyotrophic Lateral Sclerosis (ALS) remains unclarified. We studied human ALS patients' plasma (taken at early to late disease stages) and primary fibroblast cultures (patients vs controls), in parallel with SOD1-G93A transgenic mice (taken at pre-, early- and late symptomatic stages) and the mouse motor neuron cell line (NSC-34) treated with Sodium Arsenite (SA) to induce oxidative stress. TLQP peptides were measured by enzyme-linked immunosorbent assay, in parallel with gel chromatography characterization, while their localization was studied by immunohistochemistry. ⋯ In mice, a comparable pattern of reduction was shown (vs wild type), in both plasma and spinal cord already in the pre-symptomatic phase (about 26% and 70%, respectively). Similarly, the levels of TLQP peptides were reduced in ALS fibroblasts (31% of controls) and in the NSC-34 treated with Sodium Arsenite (53% of decrease), however, the exogeneous TLQP-21 improved cell viability (SA-treated cells with TLQP-21, vs SA-treated cells only: about 83% vs. 75%). Hence, TLQP peptides, reduced upon oxidative stress, are suggested as blood biomarkers, while TLQP-21 exerts a neuroprotective activity.
-
Brain structural connectivity is known to be altered in cases of intrauterine growth restriction and premature birth, although the specific effect of maternal nutritional restriction, a common burden in human populations, has not been assessed yet. Here we analyze the effects of maternal undernutrition during pregnancy and lactation by establishing three experimental groups of female mice divided according to their diet: control (Co), moderate calorie-protein restriction (MCP) and severe protein restriction (SP). Nutritionally restricted dams gained relatively less weight during pregnancy and the body weight of the offspring was also affected by maternal undernutrition, showing global growth restriction. ⋯ We also found a differential effect on network parameters: network degree, clustering, characteristic path length and small-worldness remained mainly unchanged, while the rich-club index was lower in nutritionally restricted animals. Rich-club decrease reflects an impairment in the structure by which brain regions with large number of connections tend to be more densely linked among themselves. Overall, the findings presented here support the hypothesis that chronic nutritional stress produces long-term changes in brain structural connectivity.
-
Receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in the pathology of several progressive neurodegenerative disorders including Huntington's disease (HD). We previously showed that the expression of RAGE and its colocalization with ligands were increased in the striatum of HD patients, increasing with grade severity, and that the pattern of RAGE expression coincided with the medio-lateral pattern of neurodegeneration. However, the exact role of RAGE in HD remains elusive. ⋯ The rostro-caudal location did not affect RAGE expression. RAGE was predominantly expressed in the medium spiny neurons (MSN) where it colocalized most extensively with N-carboxymethyllysine (CML), which largely contradicts with observations from human HD brains. Overall, the tgHD rat model only partially recapitulated the pattern in striatal RAGE expression in human brains, raising a question about its reliability as an animal model for future functional studies.
-
Hypofunction of NMDA receptors in parvalbumin (PV)-positive interneurons has been proposed as a potential mechanism for cortical abnormalities and symptoms in schizophrenia. GluN2C-containing receptors have been linked to this hypothesis due to the higher affinity of psychotomimetic doses of ketamine for GluN1/2C receptors. However, the precise cell-type expression of GluN2C subunit remains unknown. ⋯ GluN2C was found to be enriched in several first-order and higher order thalamic nuclei. Interestingly, we found that a previous GluN2C β-gal reporter model excluded expression from PV-neurons and certain thalamic nuclei but exhibited expression in the retrosplenial cortex. GluN2C's unique distribution in neuronal and non-neuronal cells in a brain region-specific manner raises interesting questions regarding the role of GluN2C-containing receptors in the central nervous system.