Neuroscience
-
Wobbler mice are experimental models for amyotrophic lateral sclerosis. As such they show motoneuron degeneration, motor deficits, and astrogliosis and microgliosis of the spinal cord. Additionally, Wobbler mice show increased plasma, spinal cord and brain corticosterone levels and focal adrenocortical hyperplasia, suggesting a pathogenic role for glucocorticoids in this disorder. ⋯ Treatment of Wobbler mice with CORT 113176 reversed the abnormalities of motoneurons and down-regulated proinflammatory mediators and glial reactivity. Expression of glutamate transporters GLT1 and GLAST mRNAs and GLT1 protein was significantly enhanced over untreated Wobblers. In summary, antagonism of GR with CORT 113176 prevented neuropathology and showed anti-inflammatory and anti-glutamatergic effects in the spinal cord of Wobbler mice.
-
Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical somatosensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. ⋯ High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve somatosensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex.
-
Life satisfaction reflects an individual's general evaluation of their overall quality of life. It has been hypothesized that relationship status (i.e. state of intimate relationship such as marriage, unmarried cohabiting, dating with others, single or divorce) may influence individual life satisfaction. However, there is little accessible empirical evidence that allows us to explore this proposition. ⋯ These effects were independent of emotional, instrumental support, and socioeconomic status. Besides, statistical significance of the moderation effect pertaining to relationship status was lost once perceived stress was included as a covariate into the moderation model. Our findings provided empirical evidence for the potentially positive role of relationship status in life satisfaction, and also showed that remission of stress may be a critical factor.
-
Experience-dependent synaptic plasticity is an important component of both learning and motivational disturbances found in addicted individuals. Here, we investigated the role of cocaine experience-dependent plasticity at excitatory synapses in the nucleus accumbens shell (NAcSh) in relapse-related behavior in mice with a history of volitional cocaine self-administration. ⋯ Furthermore, we show that these effects are due to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-specific mechanisms that differ depending on the nature and context of the reinstatement-inducing stimuli. Together, our findings identify common themes as well as differential mechanisms that are likely important for the ability of diverse environmental stimuli to drive relapse to addictive-like cocaine-seeking behavior.
-
Lipophilic neurotransmitters (NTs) such as dopamine are chemical messengers enabling neurotransmission by adhering onto the extracellular surface of the post-synaptic membrane in a synapse, followed by binding to their receptors. Previous studies have shown that the strength of the NT-membrane association is dependent on the lipid composition of the membrane. Negatively charged lipids such as phosphatidylserine, phosphatidylglycerol, and phosphatidic acid have been indicated to promote NT-membrane binding, however these anionic lipids reside almost exclusively in the intracellular leaflet of the post-synaptic membrane instead of the extracellular leaflet facing the synaptic cleft. ⋯ The in silico results suggest that gangliosides form a charge-based vestibule in front of the post-synaptic membrane, attracting amphipathic NTs to the vicinity of the membrane. The results also stress the importance to understand the significance of the structural details of NTs, as exemplified by the GM1-acetylcholine interaction. In a larger context, the NT-membrane adherence, coupled to lateral diffusion in the membrane plane, is proposed to improve neurotransmission efficiency by advancing NT entry into the membrane-embedded ligand-binding sites.