Neuroscience
-
Changes in inhibition following traumatic brain injury (TBI) appear to be one of the major factors that contribute to excitation:inhibition imbalance. Neuron pathology, interneurons in particular evolves from minutes to weeks post injury and follows a complex time course. Previously, we showed that in the long-term in diffuse TBI (dTBI), there was select reduction of specific dendrite-targeting neurons in sensory cortex and hippocampus while in motor cortex there was up-regulation of specific dendrite-targeting neurons. ⋯ However, DG of hippocampus now showed reduction of dendrite-targeting inhibitory neurons. Finally, with respect to motor cortex, there was an upregulation of dendrite-targeting interneurons in the supragranular layers at 24 h returning to normal levels by 2 weeks. Overall, our findings reconfirm that dendritic inhibition is particularly susceptible to brain trauma, but also show that there are complex brain-area-specific changes in inhibitory neuronal numbers and in compensatory changes, rather than a simple monotonic progression of changes post-dTBI.
-
The aim of this cross-sectional study was to determine the associations of objectively assessed habitual physical activity and physical performance with brain plasticity outcomes and brain-derived neurotrophic factor (BDNF) levels in cognitively healthy older adults. Physical performance was analyzed based on cardiopulmonary exercise-testing data and accelerometer-based physical activity was analyzed as total activity counts, sedentary time, light physical activity and moderate to vigorous physical activity. Brain plasticity outcomes included magnetic resonance spectroscopy (MRS)-based markers, quantitative imaging-based hippocampal volume and BDNF serum levels. ⋯ In this study these associations were not mediated significantly by physical performance. Overall physical activity and exceeding current moderate to vigorous physical activity recommendations were positively associated with BDNF. Sedentary behavior, however, seems to be negatively related to neurotrophic factor bioavailability in the elderly.
-
Considerable work in recent years has examined the relationship between cortical thickness (CT) and general intelligence (IQ) in healthy individuals. It is not known whether specific IQ variables (i.e., perceptual reasoning [PIQ], verbal comprehension IQ [VIQ], and full-scale IQ [FSIQ]) are associated with multiple cortical measures (i.e., CT, cortical volume (CV), cortical surface area (CSA) and cortical gyrification (CG)) within the same individuals. Here we examined the association between these neuroimaging metrics and IQ in 56 healthy adults. ⋯ We did not observe statistically significant relationships between IQ and either CSA or CG. Our findings suggest that the neural basis of IQ extends beyond previously observed relationships with fronto-parietal regions. We also conclude that CT and CV may be more useful metrics than CSA or CG in the study of intellectual abilities.
-
Whereas environmental challenges during gestation have been repeatedly shown to alter offspring brain architecture and behavior, exploration examining the consequences of paternal preconception experience on offspring outcome is limited. The goal of this study was to examine the effects of preconception paternal stress (PPS) on cerebral plasticity and behavior in the offspring. Several behavioral assays were performed on offspring between postnatal days 33 (P33) and 101 (P101). ⋯ Neuroanatomical measures revealed a heavier brain in stressed animals and dendritic changes in all regions measured, the precise effect varying with the measure and cerebral region. Thus, PPS impacted both behavior and neuronal morphology of offspring. These effects likely have an epigenetic basis given that in a parallel study of littermates of the current animals we found extensive epigenetic changes at P21.