Neuroscience
-
Chronic pain is a serious condition that significantly impairs the quality of life, affecting an estimate of 1.5 billion people worldwide. Despite the physiological, emotional and financial burden of chronic pain, there is still a lack of efficient treatments. ⋯ Intrathecal administration of NPY in animal models of neuropathic, inflammatory or postoperative pain has been shown to cause analgesia, even though its exact mechanisms are still unclear. It remains to be seen whether these promising central antinociceptive effects of NPY can be transferred into a future treatment for chronic pain.
-
In the understanding of chronic pain, hypotheses derived from psychological theories, together with insights from physiological assessments and brain imaging, highlight the importance of mechanistically driven approaches. Physical system changes, for example following injury, can result in alterations of psychological processes and are accompanied by changes in corticolimbic circuits, which have been shown to be essential in emotional learning and memory, as well as reward processing and related behavior. In the present review, we thus highlight the importance of motivational, reward/pain relief, and fear learning processes in the context of chronic pain and discuss the potential of a mechanistic understanding of chronic pain within a clinical perspective, for example for the development of therapeutic strategies. We argue that changes in these mechanisms are not only characteristic for chronic pain, reflecting consequences of the disorder, but are also critically involved in the transition from acute to chronic pain states.
-
The transmission of noxious stimuli from peripheral receptors to the cortex involves multiple central ascending pathways. While projections to areas in the brainstem and diencephalon are likely involved in mediating the immediate behavioral responses to pain, the assessment of the sensory and emotional/motivational components of pain are likely processed in parallel ascending pathways that relay in the thalamus on their way to the cerebral cortex. ⋯ In addition, we outline experimental animal and human evidence of functional, anatomical and biochemical alterations in thalamocortical circuits that may be responsible for altered thalamocortical rhythms and the persistent presence of pain following nervous system damage. Finally, we discuss advances in clinical and preclinical development of chronic pain treatments aimed at altering neural and glial function.
-
Controlled Clinical Trial
Inhibition of pain and pain-related brain activity by heterotopic noxious counter-stimulation and selective attention in chronic non-specific low back pain.
The aim of the present study was to assess inhibition of pain and somatosensory-evoked potentials (SEPs) by heterotopic noxious counter-stimulation (HNCS) and by selective attention in patients with chronic non-specific LBP. Seventeen patients and age/sex-matched controls were recruited (10 men, 7 women; mean age ± SD: 43.3 ± 10.4 and 42.7 ± 11.1, respectively). On average, patients with LBP reported pain duration of 7.6 ± 6.5 years, light to moderate disability (19.3 ± 5.7/100) and low clinical pain intensity (21.8 ± 1.5/100), while pain catastrophizing, state and trait anxiety and depressive symptoms were not significantly different between groups (all p's >0.05). ⋯ This indicates that patients with the characteristics described above do not show altered pain inhibitory mechanisms involved in HNCS and selective attention. Importantly, this experiment was carefully designed to control for non-specific effects associated with the repetition of the test stimulus and the effect of an innocuous counter-stimulation. It remains to be determined if these results hold for patients with severe LBP and psychological symptoms or whether symptom severity may be associated with pain inhibition deficits.
-
Secondary mechanical hyperalgesia to punctate mechanical stimuli and light touch (allodynia) are prominent symptoms in neuropathic pain states. In a combined microneurographic and psychophysical study, we investigated the role of mechano-insensitive (silent) nociceptors regarding induction. Electrical thresholds of mechano-sensitive and silent nociceptors were assessed by microneurography with two closely spaced intracutaneous electrodes (i.c.) and a transcutaneous configuration (t.c.) in the foot dorsum. ⋯ Punctate hyperalgesia was evoked at very low stimulation frequencies of 1/20 Hz (7/7 subjects), whereas the induction of an axon reflex flare required stimulation at 1/5 Hz. Electrical stimulation which is sufficient to excite mechano-insensitive C nociceptors can induce secondary mechanical hyperalgesia even at low frequencies supporting a role of such low-level input to clinical pain states. Thus, differential nociceptor class-specific input to the spinal cord adds to the complexity of modulatory mechanisms that determine nociceptive processing in the spinal cord.