Neuroscience
-
Elevated levels of cholesterol (hypercholesterolemia) and homocysteine (hyperhomocysteinemia, HHcy) in blood have been linked with the pathology of Parkinson's disease. However, the impact of their combined effect on brain is unknown. The present study aims to investigate the effect of HHcy on dopaminergic neurons in brain of mice with hypercholesterolemia. ⋯ While neither hypercholesterolemia nor HHcy caused significant changes in the number of TH-positive neurons, hypercholesterolemia in combination with HHcy resulted in a significant loss of nigral TH-positive neurons. The results highlighted the involvement of mitochondrial complex-I dysfunction with subsequent generation of hydroxyl radicals for the observed loss of midbrain dopamine neurons in animals receiving the combined treatment. Thus, the findings of the present study pointed out the combined effect of homocysteine and cholesterol toward dopamine neuronal dysfunctions, which has substantial relevance to Parkinson's disease.
-
Neuronal apoptosis plays important roles in the early brain injury after subarachnoid hemorrhage (SAH). This study first showed that inhibition of activating transcription factor 6 (ATF6) by apelin-13 could reduce endoplasmic reticulum (ER)-stress-mediated apoptosis and blood-brain-barrier (BBB) disruption after SAH. We chose apelin-13, ATF6 and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) siRNAs to verify the hypothesis. ⋯ What's more, the administration of apelin-13 could reduce brain edema, ameliorate BBB disruption and improve neurological functions. However, the CHOP siRNA could significantly reverse the pro-apoptotic effect induced by the increased ATF6 level after SAH. Apelin-13 could exert its neuroprotective effects via suppression of ATF6/CHOP arm of ER-stress-response pathway in the early brain injury after SAH.
-
Every year between 0.75% and 2% of pregnant women require surgery that is related to either the pregnancy or other medical problems in USA. Therefore, the neurodegeneration following anesthesia in a variety of animal models has attracted our attention. Neurotoxic effects of ketamine cannot be ignored. ⋯ Ketamine promoted the production of ROS and MDA, and reduced total antioxidant capacity (T-AOC); these effects were attenuated by midazolam. In conclusion, ketamine induces toxicity in human neurons through ROS-mediated activation of mitochondrial apoptotic pathway and autophagy. The harmful effects of ketamine can be ameliorated by midazolam.
-
Benzodiazepines are commonly prescribed to treat neurological conditions including epilepsy, insomnia, and anxiety. The discovery of benzodiazepine-specific binding sites on γ-aminobutyric acid type-A receptors (GABAARs) led to the hypothesis that the brain may produce endogenous benzodiazepine-binding site ligands. An endogenous peptide, diazepam binding inhibitor (DBI), which can bind these sites, is thought to be capable of both enhancing and attenuating GABAergic transmission in different brain regions. ⋯ In DG granule cells, conversely, the loss of DBI decreased mIPSC amplitude and increased mIPSC decay time, indicating bidirectional modulation of GABAAR-mediated transmission in specific subregions of the hippocampus. eIPSC paired-pulse ratios were consistent across genotypes, suggesting that alterations in mIPSC frequency were not due to changes in presynaptic release probability. Furthermore, cells from DBI knockout mice did not display altered responsiveness to pharmacological applications of diazepam, a benzodiazepine, nor flumazenil, a benzodiazepine-binding site antagonist. These results provide evidence that genetic loss of DBI alters synaptic inhibition in the adult hippocampus, and that the direction of DBI-mediated modulation can vary discretely between specific subregions of the same brain structure.
-
Neuroligin 1 (NLGN1), a cell adhesion molecule present at excitatory glutamatergic synapses, has been shown to be critical for synaptic specialization and N-methyl-d-aspartate (NMDA)-subtype glutamate receptor-dependent synaptic plasticity. Whether and how NLGN1 is engaged in nociceptive behavioral sensitization remains largely unknown. In this study, we found an activity-dependent regulation of NLGN1 synaptic expression in pain-related spinal cord dorsal horns of mice. ⋯ We also found that one of the important roles of NLGN1 was to facilitate the clustering of NMDAR at synapses. The NLGN1-targeting siRNA suppressed the synaptic expression of GluN2B-containing NMDAR in CFA-injected mice and meanwhile, attenuated the inflammatory mechanical allodynia and thermal hypersensitivity. These data suggested that tissue injury-induced synaptic redistribution of NLGN1 was involved in the development of pain hypersensitivity through facilitating the synaptic incorporation of NMDARs.