Neuroscience
-
Exposure to environmental enrichment (EE) has been a useful model for studying the effects of experience on brain plasticity, but to date, few is known about the impact of this condition on the brain functional networks that probably underlies the multiple behavioral improvements. Hence, we assessed the effect of an EE protocol in adult Wistar rats on the performance in several behavioral tasks testing different domains (Open field (OP): locomotor activity; Elevated-zero maze (EZM): anxiety-related behaviors; 5-choice serial reaction time task (5-CSRTT): attentional processes; 4-arm radial water maze (4-RAWM): spatial memory) in order to check its effectiveness in a wide range of functions. After this, we analyzed the functional brain connectivity underlying each experimental condition through cytochrome C oxidase (COx) histochemistry. ⋯ On the other hand, enriched rats showed more accuracy in the 4-RAWM, whereas 5-CSRTT performance was not significantly ameliorated by EE condition. In relation to COx functional connectivity, we found that EE reduced the number of strong positive correlations both in basal and training conditions, suggesting a modulating effect on specific brain connections. Our results suggest that EE seems to have a selective effect on specific brain regions, such as prefrontal cortex and hippocampus, leading to a more efficient brain connectivity.
-
Painful neuropathic injuries are accompanied by robust inflammatory and oxidative stress responses that contribute to the development and maintenance of pain. After neural trauma the inflammatory enzyme cyclooxygenase-2 (COX-2) increases concurrent with pain onset. Although pre-treatment with the COX-2 inhibitor, meloxicam, before a painful nerve root compression prevents the development of pain, the pathophysiological mechanisms are unknown. ⋯ Oxidative damage following nerve root compression was found predominantly in neurons rather than glial cells. The expression of 8-OHG in DRG neurons at day 7 was reduced with meloxicam. These findings suggest that meloxicam may prevent the onset of pain following nerve root compression by suppressing inflammation and oxidative stress both centrally in the spinal cord and peripherally in the DRG.
-
Prenatal exposure to high-fat diet (HFD) might predispose offspring to develop metabolic and mental disorders later in life. Insight into the molecular and behavioral consequences of maternal HFD on offspring is sparse but may involve both neuroinflammation and a dysregulated neuroendocrine stress axis. Thus, the aim of this work was to: (i) investigate the influence of maternal HFD on memory, anxiety and depression-like behavior in adult offspring and (ii) identify possible biological biomarkers related to neuroinflammation and stress responses. ⋯ This behavioral alteration was accompanied by significantly higher mRNA levels of the hippocampal pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) mRNA and monocyte-chemoattractant protein-1 (MCP-1), both of which correlated with degree of behavioral change. Maternal exposure to HFD increased the offspring's levels of hippocampal, corticosteroid releasing hormone receptor 2 (CRHR2) and kynurenine mono oxygenase (KMO) mRNA, whereas kynurenine aminotransferase I (KAT1) mRNA levels were decreased. The present results suggest that neuroinflammatory and stress axis pathways in the hippocampus may contribute to anxiogenic effects of maternal HFD in offspring.
-
The purpose of this study was to determine the response, in rat, to chronic physical activity in small and large DRG neurons. Rats were cage-confined or underwent 16-18 weeks of daily increased activity, via 2 h of treadmill running per day or free access to voluntary exercise wheels, following which small (≤30 µm) and large (≥40 µm) diameter DRG neurons were harvested by laser capture microdissection from flash-frozen lumbar DRGs. Relative mRNA levels were determined using real-time polymerase chain reaction. ⋯ In large DRG neurons, voluntary wheel exercise decreased the expression for 5HT1D receptors, whereas both treadmill and voluntary wheel exercise decreased the expression of mRNA for TrkC receptors. DRG neurons show slightly more changes in gene expression after voluntary exercise compared to the treadmill exercise group. Small and large lumbar sensory neurons are responsive to chronically increased neuromuscular activity by changing the expression of genes, the products of which could potentially change the sensory processing of nociceptors and proprioceptors, which could in turn alter functions such as pain transmission and locomotor coordination.
-
For Parkinson's disease (PD), the regulatory mechanism of α-synuclein (α-syn) aggregation remains to be clarified. Ubiquitination modification is crucial for α-syn aggregation, with implications for Lewy body formation. Besides, ubiquitin ligase absentia homolog (siAH) is involved in the ubiquitination of α-syn. ⋯ In cellular models of rotenone-mediated neurotoxicity, the interactions between p75 and siAH were revealed by immunoprecipitation; the colocalization of p75 with α-syn was observed in the cytoplasm; p75 promoted nuclear expression of NF-κB (p65), which might interact with the promoter of the siAH gene. Moreover, siRNA-mediated p75 depletion reduced the upregulation of α-syn and nuclear expression of p65 and protected against cell apoptosis induced by rotenone. Thus, aberrant expression of p75 may regulate the increased expression of α-syn, which is related to siAH-mediated ubiquitination and nuclear expression of p65.