Neuroscience
-
Peripheral immune activation could cause neuroinflammation, leading to a series of central nervous system (CNS) disorders, such as spatial learning and memory dysfunction. However, its pathogenic mechanism and therapeutic strategies are not yet determined. The present study aimed to investigate the therapeutic effects of sulforaphane (SFN) on lipopolysaccharide (LPS)-induced spatial learning and memory dysfunction, and tried to elucidate its relationship with the role of hippocampal brain-derived neurotrophic factor (BDNF)-mammalian target of rapamycin (mTOR) signaling pathway. ⋯ In addition, hippocampal levels of inflammatory cytokines, synaptic proteins, BDNF-tropomyosin receptor kinase B (TrkB) and mTOR signaling pathways were altered in the processes of LPS-induced cognitive dysfunction and SFN's therapeutic effects. Furthermore, we found that ANA-12 (a TrkB inhibitor) or rapamycin (a mTOR inhibitor) could block the beneficial effects of SFN on LPS-induced cognitive dysfunction, and that hippocampal levels of synaptic proteins, BDNF-TrkB and mTOR signaling pathways were also notably changed. In conclusion, the results of the present study suggest that SFN could elicit improving effects on LPS-induced spatial learning and memory dysfunction, which is likely related to the regulation of hippocampal BDNF-mTOR signaling pathway.
-
Parkinson's disease (PD) is the second most common neurodegenerative disorders. Neuroinflammation plays an important role in the pathogenesis of PD. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was elevated in the brain specimens of PD patients and MPP+-treated SH-SY5Y cells. ⋯ Additionally, Snhg1 was increased in MPTP-induced PD mouse models. Downregulation of Snhg1 elevated miR-7 expression, suppressed the activation of microglia and NLRP3 inflammasome as well as dopaminergic neuron loss in the midbrain substantia nigra pars compacta in MPTP-treated mice. In conclusion, our study suggests that SNHG1 promotes neuroinflammation in the pathogenesis of PD via modulating miR-7/NLRP3 pathway.
-
Mutations in a ubiquitin (Ub)-binding adaptor protein optineurin have been found in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease with a prominent neuroinflammatory component. Unlike more frequent ALS mutations which cause disease by gaining toxic properties such as aggregation, mutated optineurin is thought to cause disease by loss-of-function, highlighting its neuroprotective role. Optineurin regulates inflammatory signaling by acting as a scaffold for Tank-binding kinase 1 (TBK1) activation and interferon (IFN)-β production in peripheral immune cells. ⋯ Notably, although optineurin was also reported to block proinflammatory transcription factor NF-κB, normal NF-κB activation and TNF production were found in Optn470T microglia. However, expression of both proinflammatory and anti-inflammatory factors distal to IFN-β was diminished, and could be restored upon IFN-β supplementation. Taken together with the recent discoveries of TBK1 mutations as an important genetic factor in ALS, our results open up the possibility that disruption of optineurin/TBK1-mediated IFN-β axis leads to an immune failure in containing neuronal damage, which could predispose to neurodegeneration.
-
Genetic mutations of FOXP1 and FOXP2 are associated with neurodevelopmental diseases. It is important to characterize the cell types that express Foxp1 and Foxp2 in the brain. Foxp1 and Foxp2 are expressed at high levels in the striatum of mouse brains. ⋯ Neither Foxp1 nor Foxp2 was found to co-localize with parvalbumin, somatostatin, nNOS, calretinin and ChAT in interneurons of the striatum. Moreover, none of parvalbumin-, somatostatin-, nNOS-, and calretinin-positive interneurons co-expressed Foxp1 or Foxp2 in the cerebral cortex. As Foxp1 and Foxp2 can form heterodimers for transcriptional regulation, the differential and overlapping expression pattern of Foxp1 and Foxp2 in SPNs implicates coordinate and distinct roles of Foxp1 and Foxp2 in developmental construction and physiologic functions of striatal circuits in the brain.
-
The brain is capable of improving from a chronically stressed state. The hippocampus in particular appears to "recover" from chronic stress-induced morphological and functional deficits following a post-stress rest period of several weeks. We previously found that hippocampal brain-derived neurotrophic factor (BDNF) was necessary for spatial ability to improve following a post-stress rest period. ⋯ In the second study, we tested whether the TrkB receptor was involved by administering daily systemic injections of ANA-12, a TrkB receptor antagonist, during the three-week post-stress rest period. ANA-12 prevented the improvement in spatial ability and CA3 apical dendritic complexity following the post-stress rest period. These data demonstrate that hippocampal BDNF acting via its TrkB receptor is necessary during the post-stress rest period in order to improve the impaired hippocampal structural and cognitive outcomes that occur in response to chronic stress.