Neuroscience
-
Peripheral diabetic neuropathy (PDN) is one of the most common complications of diabetes mellitus. Previous studies showed an association between dietary iron load and inflammation in the development of PDN in a rat model of type 1 diabetes (T1D). Here we investigated the role of iron and neural inflammation in development of PDN in a animal model of obesity and type 2 diabetes (T2D). 3-month-old db/db mice were fed with a high, standard or low iron diet for 4 months. ⋯ Numbers of pro-inflammatory M1 macrophages were reduced in nerve sections, and anti-inflammatory M2 macrophages were increased in db/db mice on high iron diet compared to other groups. These results confirm and extend our previous findings in STZ-diabetic rats by showing that dietary non-hem iron supplementation may partly prevent the development of PDN in opposition to iron restriction. The identification of these dietary iron effects on the metabolic and inflammatory mechanisms of PDN supports a role of dietary iron and leads us to suggest testing for iron levels in human diabetic patients.
-
Low frequency stimulation (LFS) has anticonvulsant effect and may restore the ability of long-term potentiation (LTP) to the epileptic brain. The mechanisms of LFS have not been completely determined. Here, we showed that LTP induction was impaired following in vitro epileptiform activity (EA) in hippocampal slices, but application of LFS prevented this impairment. ⋯ When slices were perfused by prazosin (α1-adrenergic receptor antagonist; 10 μM) before and during LFS application, LFS improvement on LTP induction was reduced significantly. Perfusion of slices by yohimbine (α2-adrenergic receptor antagonist; 5 μM) had no effect on LFS action. Therefore, it may be concluded that following epileptiform activity, LFS can improve the impairment of LTP generation through α1, but not α2, adrenergic receptor activity.
-
Enhancing the migration and phagocytosis of microglial cells is of great significance for the reducing of the risk of the neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The effect of mouse selenoprotein K (mSELENOK) on the migration and phagocytosis of BV2 microglial cells and its mechanism were studied. The results showed that the over-expression of mSELENOK can increase the migratory and phagocytic abilities of the microglial cells, while the knockdown of mSELENOK can decrease the migratory and phagocytic abilities of the cells. ⋯ Further studies revealed that selenium supplement (Na2SeO3) can increase the expression of mSELENOK in microglial cells significantly. In summary, these data suggest that mSELENOK can increase cytosolic free Ca2+ level of microglial cells by up-regulating the expression of IP3R, thus enhancing the migration and phagocytosis of microglial cells. Our results indicated that mSELENOK is an important selenoprotein, which plays a role in trace element selenium's functions and can enhance the migration and phagocytosis of microglial cells.
-
In the developing brain, microglial cells play an important role in shaping neuronal circuits. These immune cells communicate with neurons through fractalkine (CX3CL1), a neuronal cytokine that acts on microglial CX3CR1 receptor. Among various functions, this signaling pathway has been implicated in the postnatal maturation of glutamatergic synapses. ⋯ In CX3CR1-deficient mice, GABAergic currents were slightly altered, whereas the developmental changes of these currents were comparable with wild-type animals. Despite these minor changes in GABAergic transmission, the GDP frequency was strikingly reduced in CX3CR1-deficient mice compared to wild-type, with no change in the GDP shape and ending period. Collectively, it emerges that, in the neonate hippocampus, the fractalkine signaling pathway tunes GDP activities and is marginally involved in the maturation of GABAergic synapses, suggesting that microglial cells have distinct impact on maturing GABAergic, glutamatergic, and network functions.
-
Activated microglia have two functional states (M1 and M2) which play dual roles in neurodegenerative diseases. In the present study, we explored a possible neuroprotective function of M2 microglia against kainic acid (KA)-induced neurodegeneration in primary neurons co-cultured with different microglial populations. Neurons were isolated from the hippocampi and cortices of C57BL/6 embryos (embryonic day 16) and microglia were extracted from neonatal pups (postnatal days 0-2). ⋯ In contrast, neurons co-cultured with M1 microglia exhibited the lowest survival rate as well as increased levels of NO and pro-inflammatory cytokines. Further, the expression of NF-κB and caspase 3 were significantly decreased in M2 microglia co-cultures compared to M1 or M0 microglia co-cultures after KA insult. Therefore, M2 microglia may exert a neuroprotective function in KA-induced neurotoxicity via the down-regulation of NF-κB and caspase 3 signaling pathways.