Neuroscience
-
Stress induced tRNA halves (tiRNAs) as biomarkers for stroke and stroke therapy; Pre-clinical study.
tiRNAs are small non-coding RNAs generated by angiogenin-mediated tRNA cleavage during cellular stress. Some tiRNAs were shown to be cytoprotective, while other reports indicate that the generation of tiRNAs is cytotoxic. ⋯ We also evaluated the temporal changes in several tRNA modifying enzymes and showed a correlation between their expression and tRNA cleavage. In conclusion, we show that tiRNAs can serve as biomarkers for stroke and stroke therapy, further adding them to the repertoire of tools that can be used to monitor and treat stroke.
-
Bisphenol-A (BPA) exposure can affect cognitive functions of rodents and humans. However, whether information inputs for these functions in the brain are perturbed by BPA remains unclear. Here, visual perception in rats was assessed by testing their ability to discriminate between vertical and horizontal grating. ⋯ However, BPA-exposed rat pups exhibited a significant decrease in IL-1β expression in the V1, accompanied by a decline in P38 phosphorylation. After local injection of IL-1β (10 ng/ml) in the V1, these two visual properties recovered to normal levels. Thus, our findings imply that physiological dysfunction of IL-1β may contribute to orientation perception deficits in BPA-exposed rats.
-
Wallerian degeneration (WD) and axon regeneration generally take place following peripheral nerve injury (PNI). Schwann cells (SCs) and macrophages play major role in WD. SCs, acting as repair cells and primary signal mediators, dedifferentiate and proliferate to remove the debris, form Büngner's bands and secrete trophic factors during these processes. ⋯ Mechanism studies revealed that PKCα functioned through activating the ERK signaling pathway. Furthermore, PKCα also exhibited a neuroprotective role by upregulating the expression of neurotrophic factors in SCs. To sum up, this study offers novel insights for clarifying our understanding of the involvement of PKCα in the mechanism of peripheral nerve degeneration as well as regeneration.
-
Peripheral neurostimulation within the trigeminal nerve territory has been used for pain alleviation during migraine attacks, but the mechanistic basis of this non-invasive intervention is still poorly understood. In this study, we investigated the therapeutic role of peripheral stimulation of the trigeminal nerve, which provides homosegmental innervation to intracranial structures, by assessing analgesic effects in a nitroglycerin (NTG)-induced rat model of migraine. As a result of neurogenic inflammatory responses in the trigeminal nervous system, plasma protein extravasation was induced in facial skin by applying noxious stimulation to the dura mater. ⋯ The results indicated that facial territories and intracranial structures were directly connected with each other through bifurcated double-labeled neurons in the TG and through second-order WDR neurons. Homotopic stimulation at the C-fiber intensity threshold resulted in much stronger inhibition of analgesia than the same intensity of heterotopic stimulation. These results provide novel evidence for the neurological bases through which peripheral neurostimulation may be effective in treating migraine in clinical practice.
-
Timing of Modulation of Corticospinal Excitability by Heartbeat Differs with Interoceptive Accuracy.
Interoceptive inputs are ascending information from the internal body. Cortical activities have been shown to be elicited by interoceptive inputs from the heartbeat at approximately 200-600 ms after the R wave, and sensory processing is modulated by the heartbeat within the time window. However, the influence of interoceptive inputs and their timing on corticospinal excitability has not yet been fully elucidated. ⋯ Conversely, we found a significant negative correlation between the modulation of corticospinal excitability at 400 ms after the R wave and interoceptive accuracy. These results indicated that the corticospinal excitability was modulated at 200-400 ms after the R wave (systolic phase) and that the timing of excitatory or inhibitory states in the corticospinal pathway differed with interoceptive accuracy. Although the neural mechanism remains unclear, these findings may aid in determining new factors influencing corticospinal excitability.