Neuroscience
-
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. ⋯ Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
-
Recently, there has been increased concern about microstructural brain changes after head trauma. Clinical studies have investigated a neck collar that applies gentle bilateral jugular vein compression, designed to increase intracranial blood volume and brain stiffness during head trauma, which neuroimaging has shown to result in a reduction in brain microstructural alterations after a season of American football and soccer. Here, we utilized a swine model of mild traumatic brain injury to investigate the effects of internal jugular vein (IJV) compression on histopathological outcomes after injury. ⋯ Whole slide immunohistochemistry was analyzed using Qupath software. There was no difference in linear or rotational acceleration between injured collar and non-collar animals (p > 0.05). Injured animals demonstrated higher levels of the phosphorylated tau epitope AT8 (p < 0.05) and the inflammatory microglial marker IBA1 (p < 0.05) across the entire brain, but the effect of injury was markedly reduced by collar treatment (p < 0.05) The current results indicate that internal jugular venous compression protects against histopathological alterations related to closed head trauma exposure.
-
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. ⋯ We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
-
Brain ischaemia, which can cause severe nerve injury, is a global health challenge. Long non-coding RNA (lncRNA) growth-arrest specific 5 (Gas5) has been documented to exert tumour suppressive effects in several cancers. However, its role in cerebrovascular disease still requires further investigation. ⋯ LncRNA Gas5 inhibited miR-21 expression, leading to elevated levels of Pten. In vitro experiments revealed that lncRNA Gas5 depletion and miR-21 elevation resulted in the suppression of neuronal apoptosis, thus promoting neuronal survival via the PI3K/Akt signalling pathway. These findings demonstrate that lncRNA Gas5 increases miR-21 and activates Pten, contributing to the development of ischaemic brain injury, supporting the silencing of lncRNA Gas5 as a possible therapeutic target for the treatment of ischaemic brain injury.
-
Defective proprioceptive integration may play a role in the pathophysiology of motor symptoms in Parkinson's disease (PD). Dysfunction related to proprioceptively-evoked postural reactions in PD patients is still a controversial issue, with only a limited number of studies to date and mostly discordant results. The aims of the present study were (1) to determine whether or not the proprioceptive defect in PD underlies postural impairment and (2) whether or not deep brain stimulation of the subthalamic nucleus (STN-DBS) affects proprioceptive integration. ⋯ We found a significant positive effect of STN-DBS on these postural features. Our findings indicate that Parkinson patients, even in the absence of any clinical evidence of instability, falls, or freezing, use proprioceptive information for postural control less efficiently than healthy subjects. Furthermore, STN-DBS was found to improve proprioceptive integration, with positive impacts on postural orientation and balance.