Neuroscience
-
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. ⋯ We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
-
Long non-coding RNAs (lncRNAs) play critical roles in regulating the progression of cerebral ischemia. LncRNA H19 was significantly up-regulated under ischemia-reperfusion (I/R) damage and implicatedin I/R injury progression, but the mechanisms remain unclear. Mice were subjected to middle cerebral artery occlusion (MCAO)/R (1 h/24 h) to build an I/R injury model and the infarct volume and neurological deficit were assessed. ⋯ H19 knockdown and miR-19a-3p overexpression relieved I/R or OGD/R induced neuronal cell oxidative stress and apoptosis. H19/miR-19a-3p/PTEN axis could promote cerebral I/R injury via PI3K/AKT pathway. These demonstrated a mechanism how H19 participates in I/R injury, and provided us a potential target for I/R injury diagnosis and treatment.
-
The day-active tree shrew may serve as an animal model of human-like diurnal rhythms. However, the molecular basis for circadian rhythms in this species has remained unclear. In the present study, we investigated the expression patterns of core circadian genes involved in transcriptional/translational feedback loops (TTFLs) in both central and peripheral tissues of the tree shrew. ⋯ Additionally, the peripheral clock was phase-advanced relative to the brain clock, as there was a significant advance (2-4 h) for PER3, DBP, NR1D1 and NR1D2. Furthermore, these genes exhibited an anti-phasic relationship between the diurnal tree shrew and the nocturnal mouse (i.e., 12-h phasing differential). Collectively, our findings demonstrate a characteristic expression pattern of core circadian genes in the tree shrew, which may provide a means for elucidating molecular mechanisms of diurnal rhythms.
-
The main neuropathological hallmarks of Parkinson's disease (PD) are loss of dopaminergic neurons in the substantia nigra and intraneuronal protein aggregates immunoreactive for α-synuclein phosphorylated at serine 129 (pS129). Most cases of PD are idiopathic; however, genetic mutations have been identified in several genes linked to familial PD. Mutations in the gene encoding α-synuclein are causally linked to dominantly inherited forms of PD and mutations in the PTEN-induced kinase-1 (PINK1) gene are linked to recessively inherited forms of PD. ⋯ Moreover, the synuclein extracted from the brains of PFF-injected PINK1 KO rats was more insoluble compared to PFF-injected WT littermates, suggesting greater progression of α-synuclein pathology in PINK1 KO rats. Four weeks post-injection, PFFs caused significant loss of dopaminergic neurons in the substantia nigra of PINK1 KO rats, but not WT controls. Together, our results indicate that PINK1 deficiency increases vulnerability to α-synuclein aggregation and dopaminergic neurodegeneration in vivo.
-
We tested several predictions of the theory of motor control with spatial referent coordinates related to effects of muscle coactivation on force production and perception. In particular, we predicted that subjects would produce unintentional force increase by finger flexors and be unaware of this force increase. Healthy subjects performed steady force production task in isometric conditions with visual feedback on the force level. ⋯ The results confirm the earlier hypothesis on the reciprocal command being hierarchically higher than the coactivation command. The observations suggest that verbal reports and force matching use different neural mechanisms of force perception; the former are dominated by sense of effort, which reflects primarily the magnitude of the reciprocal command. There were only minor differences between the dominant and non-dominant hands, likely reflecting the faster unintentional drifts of control variables in the dominant hand.