Neuroscience
-
Acute cardiovascular exercise can promote motor memory consolidation following motor practice, and thus long-term retention, but the underlying mechanisms remain sparsely elucidated. Here we test the hypothesis that the positive behavioral effects of acute exercise involve the primary motor cortex and the corticospinal pathway by interfering with motor memory consolidation using non-invasive, low frequency, repetitive transcranial magnetic stimulation (rTMS). Forty-eight able-bodied, young adult male participants (mean age = 24.8 y/o) practiced a visuomotor accuracy task demanding precise and fast pinch force control. ⋯ Retention was evaluated 24 h following motor practice, and motor memory consolidation was operationalized as overnight changes in motor performance. Low-frequency rTMS resulted in off-line decrements in motor performance compared to sham rTMS, but these were counteracted by a preceding bout of intense exercise. These findings demonstrate that a single session of exercise promotes early motor memory stabilization and protects the primary motor cortex and the corticospinal system against interference.
-
Cerebral ischemia/reperfusion (I/R) usually leads to the exacerbation of brain injury. In the present research, the effect of BTB and CNC homology 1 (BACH1) on cerebral I/R injury was studied. Mice model of middle cerebral artery occlusion/reperfusion (MCAO/R) and Neuro-2a (N2a) cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) were established to investigate the role of BACH1. ⋯ We found that the downregulation of BACH1 reduced cell damage, oxidative stress and apoptosis in N2a cells. It was also demonstrated that the downregulation of BACH1 functioned through HO-1 and NQO1, which played important roles in protecting against cerebral I/R injury. Thus, BACH1 might be a potential therapeutic target for preventing cerebral I/R injury.
-
Unilateral noise-induced hearing loss reduces the input to the central auditory pathway disrupting the excitatory and inhibitory inputs to the inferior colliculus (IC), an important binaural processing center. Little is known about the compensatory synaptic changes that occur in the IC as a consequence of unilateral noise-induced hearing loss. To address this issue, Sprague-Dawley rats underwent unilateral noise exposure resulting in severe unilateral hearing loss. ⋯ At 28-d post-exposure, the gene expression pattern was reversed with more than 85% of genes in the ipsilateral IC now downregulated. Most genes previously downregulated in the contralateral IC 2-d post-exposure had recovered; less than 15% remained downregulated. These time-dependent, asymmetric changes in synaptic plasticity gene expression could shed new light on the perceptual deficits associated with unilateral hearing loss and the dynamic structural and functional changes that occur in the IC days and months following unilateral noise-induced hearing loss.
-
The platelet-derived growth factor receptor-α (PDGFRα) principally mediates growth factor signals in oligodendroglial progenitors and is involved in oligodendrogenesis and myelinogenesis in the developing spinal cord. However, the role of PDGFRα in the developing forebrain remains relatively unknown. We established a conditional knockout mouse for the Pdgfra gene (N-PRα-KO) using a Nestin promoter/enhancer-driven Cre recombinase and examined forebrain development. ⋯ After the defective PDGFRα signal in the forebrain, these phenotypes were clearly different from those in the spinal cord that showed defective populations expansion and migration of oligodendroglial lineage and premature myelination, as previously described. In contrast, areas of severe hypomyelination were common to both anatomical sites. PDGFRα was critically involved in the myelination of the forebrain and may differently regulate oligodendroglial lineage between the forebrain and spinal cord.